
ENGG*4810: Control of Atmospheric Particulates

Introduction to MATLAB Programming
Amir A. Aliabadi

November 13, 2017

1 Introduction

MATLAB is a programming language developed by MathWorks. It is based on performing op-
erations on matrices. This is the world’s most natural way to express computational mathemat-
ics. Figure 1 shows the MATLAB environment consisting of various windows: current directory,
workspace, command history, script editor, and command window.

The current directory shows the local files and where MATLAB looks for other files by default if
not given another path. The workspace shows the variables that are created through an analysis.
These could be single integers, arrays, matrices, characters, strings, data structures, and more.
The command window is where you execute single commands, very much like Windows command
prompt or Mac’s or Linux’ terminal. The command history shows you the commands that have
been executed before. The editor is where you can script, code, program, or simply run a succession
of commands.

IMPORTANT NOTE: Save your work only on your designated H: drive on the server or a memory
stick. DO NOT save your work on the local machine in the lab. The local storage on the machine
is erased every time the computer is rebooted.

2 Using the Command Window

Type the following commands in the command window in order to calculate volume Vp [m3] and
mass mp [kg] of a particle sphere with diameter Dp = 1 µm and unit density ρp = 1000 kg m−3:

>>Dp=1e-6

Dp=

1.0000e-06

>>rhop=1000

rhop=

1

Figure 1: The MATLAB 7.6.0 environment consisting of current directory, workspace, command
history, script editor, and command window.

1000

>>Vp=(pi/6)*Dp^3

Vp=

5.2360e-19

>>mp=rhop*Vp

mp=

5.2360e-16

Notice that MATLAB echoes the variables in the command prompt. You can turn off the echo by
placing a semicolon (;) after each command. Also notice that all variables

Dp, mp, rhop, Vp

now appear in the workspace with specific values. You can clear the command line and then
delete these variables from memory (and therefore workspace) using the following commands in
the command window:

>>clc

>>clear

2

We now perform the same calculation for Dp = 1, 2, 3, 4, 5 µm simultaneously using vector opera-
tion:

>>Dp=1e-6*[1 2 3 4 5];

>>rhop=1000;

>>Vp=(pi/6)*Dp.^3

Vp=

1.0e-16 *

0.0052 0.0419 0.1414 0.3351 0.6545

>>mp=rhop*Vp

mp=

1.0e-13 *

0.0052 0.0419 0.1414 0.3351 0.6545

where now Dp, Vp, mp are row vectors. The operation Dp.∧3 tells MATLAB to take all elements
of the vector and then raise each element to the power of three and store the result in a new
vector. If you type in Dp∧3 the compiler complains because it attempts to perform matrix algebra
on a row vector and multiply it by itself twice. We know that from dimensional consideration this
is not possible for a row vector. Note that multiplying a scalar rhop with a vector Vp is perfectly
allowed in matrix algebra, so it is not required to use the .* for this operation. However, if one
desires to multiply two matrices, element by element, this operator can be used.

3 Scripting with MATLAB

Next we use the MATLAB editor environment to write a script for the following particle kinematics
problem: Consider a solid particle that is thrown from surface with initial velocity v0 [m s−1] with
angle α [rad] relative to the horizon (x) to follow a two-dimensional projectile only under the force
of gravity (g = 9.81 m s−2) acting in the −z direction. The particle is not surrounded by air, i.e.
in vacuum, so there is no drag force. We wish to calculate and plot the particle’s projectile for
t = 0 to 20 s for the following initial conditions: a) v0 = 100 m s−1, α = π

6
, b) v0 = 150 m s−1,

α = π
4
, c) v0 = 200 m s−1, α = π

3
.

The following equations govern the motion of the particle in the two directions x and y:

v0x = v0cos(α) (1)

v0z = v0sin(α) (2)

x = x0 + v0xt (3)

z = z0 + v0zt−
1

2
gt2 (4)

Type the following script in the MATLAB editor. Comments are placed after %. Alternative
to defining vectors by specific elements in [], one can use the syntax start:step:finish or
zeros(1,n+1) to define a vector. In the former the elements will increment by the step size. In
the latter the elements are all initialized to zero. The for loop advances the index of the vector,

3

and if the increment of a loop is one then it can be omitted from the syntax. We also use an if

statement to make sure the trajectory does not become negative in the z direction. We simply
stop the particle as soon as z becomes negative.

%MATLABProgramming

%Solid particle projectile in vacuum

%Clear command window and memory

clc

clear

%Constants of simulation

g=9.81; %Gravitational acceleration [m s^-2]

n=50; %The number of time steps

alpha1=pi/6; %Throw angle [rad]

v01=100; %Initial velocity [m s^-1]

%Initial velocities

v0x1=v01*cos(alpha1);

v0z1=v01*sin(alpha1);

%Vectors

t=0:20/n:20; %Time vector from 0 to 20 [s]

x1=zeros(1,n+1); %Initialize x as a zero vector [m]

z1=zeros(1,n+1); %Initialize z as a zero vector [m]

%Loop through the time steps and update x and z coordinates

for i=2:n+1

x1(i)=v0x1*t(i);

z1(i)=v0z1*t(i)-0.5*g*(t(i))^2;

%Must check if the particle reaches the ground

if (z1(i) < 0)

%Set altitude to zero

z1(i)=0;

%Do not advance the x position

x1(i)=x1(i-1);

end

end

After writing the script save the file in your local directory as MATLABProgramming.m. Then
execute the script by clicking on the run (play) button. The series of the commands will be
executed, as if they were written in the command window. If you code runs you see that all the
variables are generated in the work space. Check them out by double clicking on each variable to
see its value. If your script does not run you should debug it first.

4

4 Plotting with MATLAB

We next plot the trajectory using MATLAB’s plot command. Type the script below into the
editor after the previous script:

figure

plot(x1,z1,’ko’);

xlabel(’x [m]’);

ylabel(’z [m]’);

Command figure tells MATLAB to start a new window for this plot. The specifier ’ko’ tells
MATLAB that we want to show this plot by black empty circles. The xlabel and ylabel

command simple enable us to label each axis. If everything goes well you should get figure 2.
You can save this figure using the figure menu.

Figure 2: Trajectory of a single particle for initial conditions given in a)

We now continue with other initial conditions b) and c). Simply copy and paste the script into
itself and create the vectors for the other initial conditions. To plot multiple curves on the same
figure you can modify the plot command according to the following script. You can also add
legends, increased marker size, use different colors, and use different font sizes for the legend and
axes labels:

figure

plot(x1,z1,’ko’,’MarkerSize’,10);

hold on

plot(x2,z2,’bd’,’MarkerSize’,10);

5

plot(x3,z3,’rs’,’MarkerSize’,10);

xlabel(’x [m]’,’FontSize’,20);

ylabel(’z [m]’,’FontSize’,20);

h_legend=legend(’a)’,’b)’, ’c)’);

set(h_legend,’FontSize’,20);

If everything goes well you should get figure 3.

Figure 3: Multiple trajectories of a single particle for various initial conditions given in a), b), and
c) plotted using markers.

You can plot vectors using lines instead of markers, or even both. Append your script with the
following code and run it again. You should get the figure 4.

figure

plot(x1,z1,’g-’,’LineWidth’,6);

hold on

plot(x2,z2,’c--’,’LineWidth’,4);

plot(x3,z3,’m^:’,’MarkerSize’,10,’LineWidth’,2);

xlabel(’x [m]’,’FontSize’,20);

ylabel(’z [m]’,’FontSize’,20);

h_legend=legend(’a)’,’b)’, ’c)’);

set(h_legend,’FontSize’,20);

6

Figure 4: Multiple trajectories of a single particle for various initial conditions given in a), b), and
c) plotted using lines or a combination of lines and markers.

5 Writing and Reading Text Files with MATLAB

We now attempt to write the simulation results into a text file. Append the following script in
your editor:

%Create a file name and assign an ID to open the file for writing

fileName = ’MATLABProgramming.txt’;

fileid=fopen(fileName,’w’);

%Write the header for the file that consists of time and the coordinates

fprintf(fileid, ’time\t x1\t z1\t x2\t z2\t x3\t z3\n’);

for i = 1:n+1

%Write in the file the data for each time step

fprintf(fileid, ’%f\t %f\t %f\t %f\t %f\t %f\t %f\n’,...

t(i), x1(i), z1(i), x2(i), z2(i), x3(i), z3(i));

end

%Close the file

fclose(fileid);

This will create a new file MATLABProgramming.txt and adds the results into it. The fopen and
fclose commands open a file id and the specifier ’w’ tells MATLAB that you are opening this

7

file to write in it. The command fprintf is used to print specific strings or variables into the
file. Specifiers \t and \n represent the tab and new line. Specifier %f tells MATLAB that you will
write a floating point variable in the text file. If you open the text file you should see this:

time [m] x1 [m] z1 [m] x2 [m] z2 [m] x3 [m] z3 [m]

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.400000 34.641016 19.215200 42.426407 41.641607 40.000000 68.497232

0.800000 69.282032 36.860800 84.852814 81.713614 80.000000 135.424865

1.200000 103.923048 52.936800 127.279221 120.216021 120.000000 200.782897

1.600000 138.564065 67.443200 169.705627 157.148827 160.000000 264.571329

2.000000 173.205081 80.380000 212.132034 192.512034 200.000000 326.790162

2.400000 207.846097 91.747200 254.558441 226.305641 240.000000 387.439394

2.800000 242.487113 101.544800 296.984848 258.529648 280.000000 446.519026

3.200000 277.128129 109.772800 339.411255 289.184055 320.000000 504.029058

3.600000 311.769145 116.431200 381.837662 318.268862 360.000000 559.969491

4.000000 346.410162 121.520000 424.264069 345.784069 400.000000 614.340323

4.400000 381.051178 125.039200 466.690476 371.729676 440.000000 667.141555

4.800000 415.692194 126.988800 509.116882 396.105682 480.000000 718.373188

5.200000 450.333210 127.368800 551.543289 418.912089 520.000000 768.035220

5.600000 484.974226 126.179200 593.969696 440.148896 560.000000 816.127652

6.000000 519.615242 123.420000 636.396103 459.816103 600.000000 862.650485

6.400000 554.256258 119.091200 678.822510 477.913710 640.000000 907.603717

6.800000 588.897275 113.192800 721.248917 494.441717 680.000000 950.987349

7.200000 623.538291 105.724800 763.675324 509.400124 720.000000 992.801381

7.600000 658.179307 96.687200 806.101731 522.788931 760.000000 1033.045814

8.000000 692.820323 86.080000 848.528137 534.608137 800.000000 1071.720646

8.400000 727.461339 73.903200 890.954544 544.857744 840.000000 1108.825878

8.800000 762.102355 60.156800 933.380951 553.537751 880.000000 1144.361511

9.200000 796.743371 44.840800 975.807358 560.648158 920.000000 1178.327543

9.600000 831.384388 27.955200 1018.233765 566.188965 960.000000 1210.723975

10.000000 866.025404 9.500000 1060.660172 570.160172 1000.000000 1241.550808

10.400000 866.025404 0.000000 1103.086579 572.561779 1040.000000 1270.808040

10.800000 866.025404 0.000000 1145.512986 573.393786 1080.000000 1298.495672

11.200000 866.025404 0.000000 1187.939392 572.656192 1120.000000 1324.613704

11.600000 866.025404 0.000000 1230.365799 570.348999 1160.000000 1349.162137

12.000000 866.025404 0.000000 1272.792206 566.472206 1200.000000 1372.140969

12.400000 866.025404 0.000000 1315.218613 561.025813 1240.000000 1393.550201

12.800000 866.025404 0.000000 1357.645020 554.009820 1280.000000 1413.389834

13.200000 866.025404 0.000000 1400.071427 545.424227 1320.000000 1431.659866

13.600000 866.025404 0.000000 1442.497834 535.269034 1360.000000 1448.360298

14.000000 866.025404 0.000000 1484.924240 523.544240 1400.000000 1463.491131

14.400000 866.025404 0.000000 1527.350647 510.249847 1440.000000 1477.052363

14.800000 866.025404 0.000000 1569.777054 495.385854 1480.000000 1489.043995

15.200000 866.025404 0.000000 1612.203461 478.952261 1520.000000 1499.466028

15.600000 866.025404 0.000000 1654.629868 460.949068 1560.000000 1508.318460

16.000000 866.025404 0.000000 1697.056275 441.376275 1600.000000 1515.601292

8

16.400000 866.025404 0.000000 1739.482682 420.233882 1640.000000 1521.314524

16.800000 866.025404 0.000000 1781.909089 397.521889 1680.000000 1525.458157

17.200000 866.025404 0.000000 1824.335495 373.240295 1720.000000 1528.032189

17.600000 866.025404 0.000000 1866.761902 347.389102 1760.000000 1529.036621

18.000000 866.025404 0.000000 1909.188309 319.968309 1800.000000 1528.471454

18.400000 866.025404 0.000000 1951.614716 290.977916 1840.000000 1526.336686

18.800000 866.025404 0.000000 1994.041123 260.417923 1880.000000 1522.632318

19.200000 866.025404 0.000000 2036.467530 228.288330 1920.000000 1517.358351

19.600000 866.025404 0.000000 2078.893937 194.589137 1960.000000 1510.514783

20.000000 866.025404 0.000000 2121.320344 159.320344 2000.000000 1502.101615

We now attempt to read the text file, partially, that we just created. Append the following script
in your editor. The textread command is suited to read entire column of a text file into a vector.
On the left hand side of the equal sign, the names for new vectors to be created appear in square
brackets []. As argument, the command takes the name of the text file, then the format specifiers
are listed. Note that if an specifier is listed with an asterisk %*f, then that column is skipped. In
this example we only read the coordinates for the second projectile, i.e. x2 and z2. The specifier
’headerlines’,1 tells MATLAB that the first line of the text file is just the header and must be
skipped:

%Read elements of a text file, selectively, into three vectors

[tread, x2read, z2read] = textread(’MATLABProgramming.txt’,...

’%f %*f %*f %f %f %*f %*f’, ’headerlines’,1);

Make sure that these new variables are created in the workspace. Double click on these variables to
see their contents. Congratulations! you have just finished your first computer lab in programming
with MATLAB.

9

ENGG*4810: Control of Atmospheric Particulates

Simulation of Particle Projectiles under
Gravity, Buoyancy, Drag, and Brownian Forces

Amir A. Aliabadi

November 13, 2017

1 Introduction

In this lab we wish to simulate the projectile of a particle under gravity, buoyancy, drag, and
Brownian forces in stagnant air in a two-dimensional domain. Here we briefly provide the relevant
equations from the lecture notes, but ask that you consult the lecture notes in detail if required.

The particle Reynolds number is an important non-dimensional parameter to calculate in order
to compute the drag coefficient.

Re =
Inertial forces

Viscous forces
=
ρu∞Dp

µ
=
u∞Dp

ν
(1)

If Re is known the drag force and coefficient on the particle can be calculated using

Fdrag =
CDApρu

2
∞

2Cc

=
πCDρD

2
pu

2
∞

8Cc

(Spherical particle) (2)

CD =

24

Re → Stokes law Re < 0.1

24
Re

(
1 + 3

16
Re + 9

160
Re2ln(2Re)

)
0.1 < Re < 2

24
Re

(
1 + 0.15Re0.687

)
2 < Re < 500

0.44 500 < Re < 2× 105

In order to properly calculate the drag force on very small particles, we need to compute the air
mean free path, Knudsen number, and therefore slip correction factor:

1

λ =
µ

0.499p(8M/πRT)1/2
(3)

Kn =
2λ

Dp

(4)

Cc = 1 + Kn

[
1.257 + 0.40exp

(
−1.10

Kn

)]
(5)

We can simulate the instantaneous Brownian acceleration of a particle, in any given coordinate
x, y, or z using the methodology of [Li and Ahmadi, 1992] and [Ounis et al., 1991], where the
acceleration is given by:

S0 =
216µkT

π2D5
pρ

2
pCc

(6)

αx,y,z(t) = δ

√
πS0

dt
(7)

where k is the Boltzmann constant, δ is a random variable sampled from a unit normal or Gaussian
distribution, and dt is the time step of the particle tracking simulation. Note that the simulation of
the Brownian diffusion of particles is very sensitive to the choice of dt. In fact this time step must
be selected appropriately to simulate Brownian diffusion correctly. Nevertheless, for the purpose
of this lab, a value of dt will be used to show relative significance of the Brownian acceleration in
comparison to drag, gravity, and buoyancy.

Having these terms and assuming that the vertical coordinate is positive upward, i.e. ↑ +z, and
that the particle is ejected in the positive direction in the horizon, i.e. → +x, then the equation
of motion for the particle is given as

mp
dvz
dt

= −
πCDρD

2
p

8Cc

|vz|(vz)︸ ︷︷ ︸
Drag force

−mpg︸ ︷︷ ︸
Gravity force

+
(π

6

)
D3

pρg︸ ︷︷ ︸
Buoyancy Force

+ mpαz(t)︸ ︷︷ ︸
Brownian force

(8)

mp
dvx
dt

= −
πCDρD

2
p

8Cc

|vx|(vx)︸ ︷︷ ︸
Drag force

+ mpαx(t)︸ ︷︷ ︸
Brownian force

(9)

2 Simulation Matrix

We assume that the initial position of the particle is x = z = 0 and that the particle is ejected
upward at an angle α = π/4 from x axis with an initial velocity of v(t = 0) = 0.01 m s−1. The

2

particle density is ρp = 1000 kg m−3. The gravitational acceleration is g = 9.81 m s−2 downward.
The air pressure is atmospheric, i.e. p = 101, 000 Pa. The molecular weigh of air is M = 28.966
g mol−1. The universal gas constant is R = 8.314 J K−1 mol−1. The Boltzmann constant is
k = 1.38 × 10−23 J K−1. The spatial domain is infinite and we wish to simulate particle motion
for 100,000 time advances with time step dt = 0.1τ , where τ is particle’s characteristic time. We
wish to study the effects of particle size and physical properties of air, i.e. temperature, pressure,
and viscosity, on the trajectory of the particle. We develop the following simulation matrix. The
particle size range represents typical airborne particle emissions. The air properties are similar to
ambient conditions and conditions in hot exhaust gas from combustion processes.

Table 1: Simulation matrix
Simulation 1 2 3 4 5 6 7 8
Dp [m] 1e–7 1e–6 1e–5 1e–4 1e–7 1e–6 1e–5 1e–4
T [K] 300 300 300 300 600 600 600 600
µ [kg m−1 s−1] ×10−5 1.846 1.846 1.846 1.846 3.017 3.017 3.017 3.017
ρ [kg m−3] 1.777 1.777 1.777 1.777 0.5883 0.5883 0.5883 0.5883

Since the first terms on the right hand side of the equation of particle motion varies with particle
velocity. We cannot integrate the equation to arrive at an analytical expression for particle trajec-
tory. Instead, we have to use the finite difference method to approximate the particle trajectory.
In this method a time step is chosen that is a fraction (usually 10%) of the particle characteris-
tic time and the particle motion is advanced using the velocity and position information in the
previous time step. The particle characteristic time is given by

τ =
ρpD

2
pCc

18µ
(10)

3 MATLAB Script

Begin your script by clearing command window and workspace and then defining all constants
required for the simulation:

%ParticleProjectile

%Particle projectile under forces of gravity, buoyancy, drag, and Brownian

%motion

%Clear command window and memory

clc

clear

%Constants of simulation

g=9.81; %Gravitational acceleration [m s^-2]

alpha=pi/4; %Throw angle [rad]

3

v0=0.01; %Initial velocity [m s^-1]

p=101000; %Air pressure [Pa]

R=8.314; %Universal gas constant [J K^-1 mol^-1]

M=28.966e-3; %Air molecular weight [kg mol^-1]

rhop=1000; %Particle density [kg m^-3]

k=1.38e-23; %Boltzmann constant [J K^-1]

Dp=1e-7; %Particle diameter [m]

T=300; %Air temperature [K]

mu=1.846e-5; %Air dynamic viscosity [kg m^-1 s^-1]

rho=1.777; %Air density [kg m^-3]

n=100000; %Number of time advances

Then calculate initial velocity in the x and z direction, followed by mean free path lambda,
Knudsen number Kn, slip correction factor Cc, and particle mass mp. The calculation of the Knud-
sen number, slip correction, and particle mass are left for you to add in the script. In general, you
should code in the script below whenever you see (...). Be careful not to miss them:

%Initial velocities

v0x=v0*cos(alpha);

v0z=v0*sin(alpha);

%Calculate mean free path, Knudsen number, slip correction, and mass

lambda=mu/(0.499*p*sqrt(8*M/(pi*R*T)));

Kn=...

Cc=...

mp=...

Next we need to calculate the simulation timestep dt as a fraction (10%) of the particle charac-
teristic time tau. Again, these two are left for you to script:

%Calculate particle characteristic time

tau=...

%Set time step as 10% of the smallest particle characteristic time

dt=...

We subsequently define the position vectors and initialize them as zero. The initial velocities also
need to be defined.

%Define position vectors and initialize to zero

x=zeros(1,n); %x Position vector [m]

z=zeros(1,n); %z Position vector [m]

%Initialize the velocity

vxold=v0x;

vzold=...

Next we loop through the time steps, finding the instantaneous acceleration followed by updating

4

particle velocities and position. At each iteration we reset the accelerations ax and az to zero.
Then we add corresponding accelerations for each direction due to drag, gravity, buoyancy, and
Brownian motion, respectively. The Reynolds number of the particle Re is calculate at each
iteration given the particle velocity in the previous time step. Subsequently, the coefficient of
drag CD is calculated. The Brownian acceleration is added by using the randn(1) function, which
generates a random variable drawn from a Gaussian distribution with unit standard deviation
and the rand function, which generates a random variable from 0 to 1 drawn from a uniform
distribution.

%Loop through the time steps and update particle position and velocity

for (i=2:n)

%Reset acceleration terms

ax=0.0;

az=0.0;

%Calculate particle’s Reynolds number (need total velocity)

Re=(rho*Dp*sqrt(vxold^2+vzold^2))/mu;

%Calculate the coefficient of drag based on this Reynolds number

if (Re < 0.1)

CD=24/Re;

elseif (Re < 2)

CD=(24/Re)*(1+3*Re/16+9*Re^2*log(2*Re)/160);

elseif (Re < 500)

CD=(24/Re)*(1+0.15*Re^0.687);

elseif (Re < 2e5)

CD=0.44;

end

%Append accelerations by drag accelerations

ax=ax-(1/mp)*pi*CD*rho*Dp^2*vxold*abs(vxold)/(8*Cc);

az=az-(1/mp)*pi*CD*rho*Dp^2*vzold*abs(vzold)/(8*Cc);

%Append accelerations by gravity force

az=...

%Append accelerations by buoyancy force

az=...

%Append accelerations by Brownian force

S0=(216*mu*k*T)/((pi^2*Dp^5*rhop^2)*Cc);

ax=ax+randn(1)*((pi*S0/dt)^0.5);

az=az+randn(1)*((pi*S0/dt)^0.5);

%Find new velocities

vx=vxold+ax*dt;

vz=...

%Find new position

x(i)=x(i-1)+vx*dt;

z(i)=...

%Update old velocities for next iteration

vxold=vx;

vzold=...

5

end

Finally you should write script to plot the coordinates z [m] versus x [m] to show the particle
trajectory.

4 Running the Script

Next you should run the script with the initial conditions provided in the simulation matrix. For
each run, simply change the particle diameter Dp and air physical properties T, mu, rho. Each
time you run the script, you can save the resulting plot in your local directory given a preferred
format, i.e. *.png, *.jpg, *.pdf etc. To do this simply click file then save on the figure
menu. Use a descriptive file name for each figure. If your script runs successfully you should get
figures similar to the following figures. Your figures will not be exactly the same because you have
a random number generator in the code, which samples from a Guassian distribution.

The figures reveal interesting and different projectiles as a function of particle size and air physical
properties. Try to discuss and answer the following questions with your peers or instructor:

• For particle sizes of Dp=1e-7 and 1e-6 m, the particle projectile appears as very jittery and
the particle does not seem to either go up or down consistently. By observing this, which
forces do you think are dominant in determining the particle motion?

• For particle size of Dp=1e-5 m the particle projectile still appears as jittery, but to a lesser
extent, while the particle seems to go down consistently. By observing this, which forces do
you think are dominant in determining the particle motion?

• For particle size of Dp=1e-4 m the particle projectile shows very little jittery movement,
while the particle seems to go down significantly. By observing this, which forces do you
think are dominant in determining the particle motion?

• Comparing the two figures, particles Dp=1e-5 and Dp=1e-4 m in size seem to drop a larger
distance when T=300 K, mu=1.846e-5 kg m−1 s−1, and rho=1.777 kg m−3 compared to when
T=600 K, mu=3.017e-5 kg m−1 s−1, and rho=0.5883 kg m−3. Try to reason why this has
happened by discussing the terms involved in the calculation of the drag force?

References

[Li and Ahmadi, 1992] Li, A. and Ahmadi, G. (1992). Dispersion and deposition of spherical
particles from point sources in turbulent channel flow. Aerosol Sci. Technol., 16:209–226.

[Ounis et al., 1991] Ounis, H., Ahmadi, G., and McLaughlin, J. B. (1991). Brownian diffusion of
submicrometer particles in the viscous sublayer. J. Colloid Interf. Sci., 143(1):266–277.

6

Figure 1: Trajectory of a single particle with sizes Dp=1e-7 m (top left), Dp=1e-6 m (top right),
Dp=1e-5 m (bottom left), Dp=1e-4 m (bottom right) for initial conditions T=300 K, mu=1.846e-5
kg m−1 s−1, and rho=1.777 kg m−3.

7

Figure 2: Trajectory of a single particle with sizes Dp=1e-7 m (top left), Dp=1e-6 m (top right),
Dp=1e-5 m (bottom left), Dp=1e-4 m (bottom right) for initial conditions T=600 K, mu=3.017e-5
kg m−1 s−1, and rho=0.5883 kg m−3.

8

ENGG*4810: Control of Atmospheric Particulates

Simulation of Particle Size Distributions
Amir A. Aliabadi

November 13, 2017

1 Introduction

In this lab we wish to simulate single mode and bimodal particle distribution functions. A crude
representation of particle sizes is by histograms N , where the number concentration for given
particle size bins each centred at Dp is plotted as a function of particle size Dp. A better represen-
tation is the particle size distribution n, which is obtained by dividing the particle concentration
N by the width of the particle size bin ∆Dp:

ni =
Ni

∆Dp

or Ni = ni∆Dp (1)

In the limit of ∆Dp → 0 we present the particle number distribution by nN(Dp). The fundamental
property of the particle number distribution is that by integrating the distribution function over
all particle sizes we obtain the total particle number concentration across all sizes

Nt =

∫ ∞
0

nN(Dp)dDp (2)

Also the cumulative particle number distribution N(Dp) gives the particle number concentration
upto particle size Dp and is given by

N(Dp) =

∫ Dp

0

nN(D∗p)dD
∗
p (3)

The following relationships allow us to convert particle number distributions to particle surface
area nS(Dp) and volume nV (Dp) distributions

nS(Dp) = πD2
pnN(Dp) (4)

1

nV (Dp) =
π

6
D3

pnN(Dp) (5)

In a similar fashion the total and cumulative particle surface area (S, S(Dp)) and volume (V ,
V (Dp)) concentration can be found.

Alternative to particle size Dp one can express distributions as a function of the logarithm of the
particle size LogDp. This has the advantage that a larger range of particle sizes can be analyzed
conveniently.

2 MATLAB Script

First we generate a random ensemble of 10,000 particles by drawing random variables from a
Gaussian distribution. The ensemble can be defined given the total sample size L1 a mean mu1

and a standard deviation std1.

%ParticleSizeDistribution

%Particle size distributions

%Clear command window and memory

clc

clear

%Constants of simulation are simply particle ensembles within 1 cm^3 volume

%Each ensemble contains a total count, mean, and standard deviation

%We also define minimum and maximum particle size and bin width for analysis

L1=10000; %Number of particles for ensemble 1

mu1=20; %Mean particle diameter [um] of ensemble 1

std1=5; %Standard deviation of particle diameter [um] of ensemble 1

dDp1=1; %Width of each bin of particle diameter [um] for ensemble 1

Dpmin1=0; %Minimum particle diameter [um] for ensemble 1

Dpmax1=70; %Maximum particle diameter [um] for ensemble 1

%Generate random variable from a Gaussian distribution

rand1=std1.*randn(L1,1)+mu1;

Subsequently we analyze the particle sizes using a histogram that groups particles in a number of
bins, given the minimum and maximum diameters Dpmin1, Dpmax1 and the bin width dDp1. The
function to perform this task with is histogram. Simultaneously by calculating the histogram,
we also plot it. Since the ensemble of particles was defined over a 1 cm3 volume. The histogram
shows particle number concentration N [cm−3] for each bin.

%Define the bins for analysis of the first distribution

bins1=[Dpmin1:dDp1:Dpmax1];

2

%Next we define the particle diameter vector. Each element contains bin centre

Dp1=[Dpmin1+dDp1/2:dDp1:Dpmax1-dDp1/2];

%The histogram of the particle ensemble is the number concentration

figure

h1=histogram(rand1,bins1);

xlabel(’Dp [um]’,’FontSize’,20);

ylabel(’N [cm^{-3}]’,’FontSize’,20);

Next we calculate particle number distribution by simply dividing the histogram elements by
bin width dDp1. However, before doing this we need to copy the histogram values into a new
vector nN1 because the histogram data type h1 contains a lot more information than we need. We
access histogram values using the statement h1.Values. We can then plot the particle number
distribution for ensemble 1 in the following figure. Notice that since the bin size width was 1 µm,
the histogram and the particle number distributions are the same.

%Store data from the histogram in a new variable dedicated for number concentration

N1=h1.Values;

%Calculate particle number distribution by dividing number concentration by bin width

nN1=N1/dDp1;

%Now plot the number distribution

figure

plot(Dp1,nN1,’k-’,’LineWidth’,3);

xlabel(’Dp [um]’,’FontSize’,20);

ylabel(’n_N(Dp) [cm^{-3} um^{-1}]’,’FontSize’,20);

Figure 1: Histogram of particle number concentration (left) and particle number distribution
(right) for particle ensemble 1.

We now generate a similar distribution but with a different bin size width. Use the following script
to specify particle ensemble 2:

3

L2=10000;

mu2=20;

std2=5;

dDp2=2;

Dpmin2=0;

Dpmax2=70;

Subsequently write the necessary script to calculate and plot histogram and particle number
distribution for particle ensemble 2. The following figure can be obtained.

Figure 2: Histogram of particle number concentration (left) and particle number distribution
(right) for particle ensemble 2.

Now by observing these figures discuss and answer the following questions:

• The vertical axis on the histogram plot for particle ensembles 1 and 2 shows that the his-
togram for particle ensemble 2 is twice larger than that for particle ensemble 1. Why is
this?

• Unlike the histograms, the particle size distributions for particle ensembles 1 and 2 are
similar, despite the difference in method to calculate them. Comment on why this is the
case? By observing this behaviour, are you not convinced that particle size distributions are
more useful than particle number concentrations?

Now we will compute the particle surface area nS2 and volume nV2 distributions for particle
ensemble 2. This is, again, possible without needing to use for loops in MATLAB because we
can perform short form vector operations element by element. Complete the following script to
do this and then plot the number, area, and volume distributions on the same plot. The result
should be the following figure.

%We now compute particle surface and volume distributions for ensemble 2

nS2=pi*(Dp2.^2).*nN2;

nV2=...

Now we will compute the cumulative particle number, surface area, and volume concentrations N,

4

Figure 3: Particle number, surface area, and volume distributions for particle ensemble 2.

S, and V, respectively. Even though MATLAB may have a built-in function to do this, we do it
by simple for loops, in order not to forget programming skills. To save memory, every time you
want to fill in a vector element by element in a for loop, you must always define the vector first.
We do this by the familiar zeros function and the dimension of the vector can be calculated by
the length function, which gives the size of the vector supplied to it as an argument. Complete
the following script to achieve this. Upon plotting you should get the following figure.

%We now compute the cumulative particle number, surface, and volume

%distributions for ensemble 2

%First create and initialize the cumulative distributions

N2=zeros(1,length(nN2));

S2=...

V2=...

%Then compute the cumulative distributions

N2(1)=nN2(1)*dDp2;

S2(1)=...

V2(1)=...

for i=2:length(nN2)

N2(i)=N2(i-1)+nN2(i)*dDp2;

S2(i)=...

V2(i)=...

end

By comparing the last two figures, try to answer the following questions:

• Comment on why the volume and surface distribution and cumulative concentrations are
much larger than the number distribution or concentration.

• Do the three distributions exhibit the same mode? Do the three cumulative concentrations
exhibit the expansion point, i.e. the slope gradient, at the same particle diameter?

5

Figure 4: Cumulative particle number, surface area, and volume concentrations for particle en-
semble 2.

Now we create a bimodal ensemble of particles, ensemble 3, with the logarithm of the particle
size. The range for particle size is from Dpmin3=0.001 um or LogDpmin3=-3 to Dpmin3=1000 um

or LogDpmin3=3 with the bin size width of dLogDp3=0.2 in the logarithmic scale (Note: it is
always good practice to use uniform bin size width, or else the analysis will be complicated).
To create a bimodal ensemble of particles we define two sets of attributes (a and b) for two
single-mode Gaussian distributions to draw random samples from. So we use different number of
particles L3a=40000, L3b=10000 and mean mu3a=-1.5, mu3b=0, but the same standard deviation
stda=stdb=0.4. Use the following script to represent the particle ensemble.

L3a=40000;

mu3a=-1.5;

std3a=0.4;

L3b=10000;

mu3b=0;

std3b=0.4;

dLogDp3=0.2;

LogDpmin3=-3;

LogDpmax3=3;

Next, complete the following script to generate random vectors necessary to generate particle
ensemble 3 and create overlapping histograms to represent the particle number concentrations

%Now we create a bimodal distribution in the lognormal representation

rand3a=std3a.*randn(L3a,1)+mu3a;

rand3b=...

bins3=[LogDpmin3:dLogDp3:LogDpmax3];

LogDp3=[LogDpmin3+dLogDp3/2:dLogDp3:LogDpmax3-dLogDp3/2];

figure

h3a=histogram(rand3a,bins3);

6

hold on

h3b=...

xlabel(’Log Dp [um um^{-1}]’,’FontSize’,20);

ylabel(’N [cm^{-3}]’,’FontSize’,20);

Then create the particle number distribution for particle ensemble 3 by adding the random vectors
and dividing by bin size width in the logarithm scale using the script below. Then plot it. You
should obtain the following figures.

N3=h3a.Values+h3b.Values;

nN3=...

Figure 5: Histogram of particle number concentration (left) and particle number distribution
(right) for particle ensemble 3.

Finally compute the particle surface area nS3 and volume nV3 distributions for particle ensemble
3. This is, again, possible without needing to use for loops in MATLAB because we can perform
short form vector operations element by element. Complete the following script to do this and
then plot the number, area, and volume distributions on the same plot.

%We now compute particle surface and volume distributions for ensemble 3

nS3=pi*((10.^LogDp3).^2).*nN3;

nV3=...

Now we will compute the cumulative particle number, surface area, and volume concentrations N,
S, and V, respectively. Again, we do it by simple for loops. The scripting for this calculation
and plotting is left for you. You should get the following figures.

By observing these figures try to answer the following questions:

• The larger peak in the number distribution is the peak to the left, while the larger peak in
the surface and volume distributions is the peak to the right. Why is this?

• Try to explain the behaviour of the cumulative concentrations. Discuss the expansion points
in these plots.

7

Figure 6: Particle number, surface area, and volume distributions for particle ensemble 3.

Figure 7: Cumulative particle number, surface area, and volume concentrations for particle en-
semble 3.

8

ENGG*4810: Control of Atmospheric Particulates

Particle Heat and Mass Transfer
Amir A. Aliabadi

November 29, 2017

1 Introduction

In this lab we are going to study evaporation of water droplets in ambient air. The fluid outside
the water droplet is a binary system consisting of air molecules and water molecules. So this
binary system consists of species A for water vapor and B for air. For simplicity in the following
formulations, we will drop index A or B, and insert p for A in places where properties should be
inserted associated with the water and not air to avoid confusion. From lecture notes we learnt
that the evaporation of a droplet is governed by the following equation

R2
p = R2

p0 +
2DMp

ρP
(c∞ − c0)t (1)

Most terms in this equation can be determined easily except for molar concentrations c that need
to be specified as a function of binary mixture temperature and relative humidity. The specific
humidity in air is defined as the ratio of mass of water vapor contained in a mass of water vapor-air
binary mixture and is given by

w =
mv

ma +mv

' mv

ma

(2)

where mv is mass of water vapor and ma is mass of air in the binary mixture. The approximation
is valid since mass of water vapor in air is usually very small. Specific humidity can be expressed
using partial pressures associated with water vapor and air

w =
mv

ma

=
PvV
RvT
PaV
RaT

=
Ra

Rv

Pv

Pa

= 0.622
Pv

Pa

=
0.622Pv

P − Pv

(3)

where V is common volume which the binary mixture occupies, P is pressure (P = Pv + Pa is
atmospheric pressure), T is temperature, and R is gas constant. This is essentially derived using
the ideal gas equation of state. The relative humidity, on the other hand, is the ratio of mass of

1

water vapor to the maximum possible mass of water vapor in air (i.e. before adding any more
water vapor resulting in condensation) and is given by

φ =
mv

mg

=
PvV
RvT
PgV

RgT

=
Pv

Pg

(4)

where Pg is saturation pressure for water vapor at a given temperature. With the above develop-
ments we have

w =
0.622φPg

P − φPg

(5)

From this discussion it is apparent that we can calculate molar concentrations necessary for the
evaporation equation as

c∞ = w∞
ρ

Mp

=
0.622φPg∞

P − φPg∞

ρ

Mp

(6)

c0 = w0
ρ

Mp

=
0.622Pg0

P − Pg0

ρ

Mp

(7)

where subscript∞ indicates the far-field conditions, and subscript 0 indicates conditions near the
droplet surface. φ = 1 near the droplet, i.e. the binary mixture is saturated near the surface of
the droplet. ρ [kg m−3] is density of mixture that is practically the density of dry air, and Mp [kg
mol−1] is the molecular weight of water.

In general, water vapor pressure is s function of temperature, therefore both c∞ and c0 depend
on temperature so that we cannot directly solve the evaporation equation as it is. Instead, we
need to solve for droplet surface temperature first using iterative methods, and then solve the
evaporation equation. An expression is provided in the lecture notes that gives the equilibrium
surface temperature for an evaporating droplet. However, at the time of developing this lab, I
could not find a numerical solution to it. Instead, I used another expression from Clausius and
Clapeyron to solve for equilibrium droplet surface temperature of an evaporating droplet

∆T =
h

cpT∞

D

α

(
w∞ − wg∞exp

[
h

RaT∞

∆T

1 + ∆T

])
(8)

∆T =
T0 − T∞
T∞

(9)

where T0 [K] is equilibrium droplet surface temperature, h [J kg−1] is enthalpy of evaporation that
is also a function of temperature, T∞ [K] is far-field temperature, cp [J kg−1 K−1] is specific heat
capacity of water, D [m2 s−1] is diffusion coefficient of air, α [m2 s−1] is thermal diffusivity of air,
w∞ is mass fraction of water vapor in air at far-field, wg∞ is mass fraction of water vapor in air
under saturated conditions, and Ra [J kg−1 K−1] is the gas constant for air.

Once this equation is solved iteratively for T0, we can then solve the evaporation equation numer-
ically to simulate the rate of droplet evaporation.

2

2 Simulation Matrix

We wish to perform simulation of droplet evaporation in a binary mixture of air and water vapor
at rest. We want to vary initial droplet radius as well as the relative humidity at far-field in the
binary system to see the effects on droplet cooling and evaporation time. Table below shows the
simulation matrix.

Table 1: Simulation matrix
Simulation 1 2 3 4 5 6 7 8
Rp0 [m] 1e–3 1e–4 1e–5 1e–6 1e–3 1e–4 1e–5 1e–6
T [K] 300 300 300 300 300 300 300 300
φ 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1

3 MATLAB Script

As usual, we begin be defining the simulation constants and the simulation time step. We wish to
simulate droplet evaporation over nt=2000 time steps. Complete the following script

%ParticleHeatMassTransfer

%Particle Heat and Mass Transfer

%Clear command window and memory

clc

clear

%Constants of simulation

pat=101.35; %Atmospheric pressure [kPa]

p=101000; %Reference air pressure [Pa]

Mp=18e-3; %Water molecular weight [kg mol^-1]

M=28.966e-3; %Air molecular weight [kg mol^-1]

cp=1007; %Specific heat of particle [J kg^-1 K^-1]

R=8.314; %Universal gas constant [J K^-1 mol^-1]

Ra=287.06; %Air Gas constant [J kg^-1 K^-1]

rhop=1000; %Water particle density [kg m^-3]

k=0.025; %Air conductivity [W m^-1 K^-1]

Rp0=1e-3; %Particle initial radius [m]

Tinf=300; %Far-field air temperature [K]

Tref=300; %Reference temperature [K]

mu=1.846e-5; %Air dynamic viscosity [kg m^-1 s^-1]

rho=1.777; %Air density [kg m^-3]

phi=0.4; %Air relative humidity [0-1]

D=2.5e-5; %Diffusivity of air [m^2 s^-1]

nt=2000; %Number of time steps

3

%Calculate mean free path, Knudsen number, slip correction, and mass

lambda=...

Kn=...

Cc=...

%Calculate particle characteristic time

tau=...

%Set time step as 10% of the smallest particle characteristic time

dt=0.1*tau;

Next, we define vectors for analysis. First we make the time vector t and the particle radius vector
Rp. We then make vectors from property tables of temperature, saturation pressure, enthalpy, and
thermal diffusivity. These vectors are needed for the iterative solution of the equilibrium droplet
surface temperature for an evaporating droplet. Insert the following script.

%Define time and particle radius vectors

t=0:dt:(nt-1)*dt;

Rp=zeros(1,nt);

%Water vapor pressures, enthalpy of vaporization and air thermal diffusivity

T=[5+273.15 10+273.15 15+273.15 20+273.15 25+273.15 30+273.15 35+273.15];

%[K]

Psat=[0.8721 1.2276 1.7051 2.339 3.169 4.246 5.628];

%[kPa]

h=1e3*[2489.6 2477.7 2465.9 2454.1 2442.3 2430.5 2418.6];

%[J kg^-1]

alpha=1e-5*[1.88 1.944 2.009 2.074 2.141 2.208 2.277];

%[m^2 s^-1]

It is easier to fit polynomials to these properties so we can efficiently interpolate when needed.
The MATLAB function to use is polyfit. Insert the following script.

%Fit polynomials (1st or 2nd order) through the data

aPsat=polyfit(T,Psat,2);

ah=polyfit(T,h,1);

aalpha=polyfit(T,alpha,2);

Next we calculate properties at far-field given the far-field temperature and relative humidity. We
make use of the polynomial coefficients for these calculations. Insert the following script.

%Calculate far-field vapor pressure [kPa]

Pginf=aPsat(1)*Tinf^2+aPsat(2)*Tinf+aPsat(3);

%Calculate far-field latent heat of vaporization [J kg^-1]

hinf=ah(1)*Tinf+ah(2);

4

%Calculate far-field specific humidity

winf=0.622*phi*Pginf/(101.35-phi*Pginf);

%Calculate far-field vapor molar concentration [mol m^-3]

cinf=winf*rho/Mp;

%Calculate far-field mass fraction under saturated conditions

wginf=winf/phi;

%Calculate far-field air thermal diffusivity [m^2 s^-1]

alphainf=...

Now we solve for the equilibrium surface temperature for the evaporating droplet iteratively using
MATLAB’s fsolve function, which attempts to find the zero of a function given an initial solution.
The equation is the Clausius Clapeyron equation, and the initial solution is Tinf.

%Solve for the equilibrium particle surface temperature

T0=fsolve(@(x)-(x-Tinf)/Tinf+(hinf/Tinf)*(1/cp)*(D/alphainf)...

*(winf-wginf*exp((hinf/Ra/Tinf)*((x-Tinf)/x))),Tinf);

Once we have the surface temperature T0 we can calculate other surface properties needed for the
evaporation equation. Insert the following script for this calculation.

%Solve for surface saturation pressure and molar concentration

%Note at close to the particle we have phi=1

Pg0=aPsat(1)*T0^2+aPsat(2)*T0+aPsat(3);

c0=0.622*Pg0/(101.35-Pg0)*rho/Mp;

Finally we can loop through the time steps and calculate the droplet radius using the evaporation
equation. Complete the following script. To compute the square root of an expression, you can
use MATLAB’s sqrt() function.

%Now loop through time steps to calculate evaporation time

for i=1:nt

if ((Rp0^2+(2*D*Mp/rhop)*(cinf-c0)*t(i))>0)

Rp(i)=...

end

end

The last step is to plot droplet radius Rp versus time t. Perform the simulation for the cases
identified in the simulation matrix. You should get the following figures.

Note that in our solution we used the continuum theory throughout the droplet evaporation
process, even for the time when droplet becomes very small. There are errors associated with
this assumption, but this analysis provides a good approximation, at least showing the relative
differences in time scales involved. Discuss the following questions.

5

• Explain the relationship between initial droplet radius and evaporation time. Is this a linear
relationship? for instance if the droplet size is reduced by a factor of 10, does the evaporation
time also reduce by a factor of 10?

• Explain the relationship between relative humidity the amount of cooling of the drop. Does
a lower relative humidity result in a lower equilibrium surface temperature of an evaporating
droplet?

• Explain the relationship between evaporation time and relative humidity. Does lowering
relative humidity reduce evaporation time?

Figure 1: Time evolution of droplet radius due to evaporation for relative humidity phi=0.4.
Particle radii are Rp0=1e-3 m (top left), Rp0=1e-4 m (top right), Rp0=1e-5 m (bottom left), and
Rp0=1e-6 m (bottom right).

6

Figure 2: Time evolution of droplet radius due to evaporation for relative humidity phi=0.1.
Particle radii are Rp0=1e-3 m (top left), Rp0=1e-4 m (top right), Rp0=1e-5 m (bottom left), and
Rp0=1e-6 m (bottom right).

7

ENGG*4810: Control of Atmospheric Particulates

Brownian Diffusion of Particles
Amir A. Aliabadi

November 13, 2017

1 Introduction

In a previous lab we introduced the methodology of [Li and Ahmadi, 1992] and [Ounis et al., 1991]
in the simulation of Brownian diffusion of particles. In this lab we apply the simulation to an
ensemble of sub-micrometer particles and further compare the Brownian diffusion to theoretical
predictions.

In 1905 Albert Einstein derived an expression that describes the Brownian diffusion of particles
with diameter Dp [m] in a fluid with dynamic viscosity of µ [kg m−1 s−1] and temperature T [K].
If an ensemble of particles are all released at a single point of a resting fluid where Brownian force
is the only force applied to the particles, then the mean square displacement of the particles in
the x, y, and z directions are given by

< x2 >=< y2 >=< z2 >= 2
kTCc

3πµDp︸ ︷︷ ︸
D

t (1)

where k [J K−1] is the Boltzmann constant, Cc is the slip correction factor, and t is time elapsed
since particle release. D [m2 s−1] is the familiar diffusion coefficient of the fluid. This equation
has been shown, experimentally, to be very accurate for sub-micrometer particles.

It is of interest to check if the simulation of the Brownian diffusion introduced in a previous lab
is in agreement with theoretical prediction.

2 MATLAB Script

We begin the MATLAB script by defining constants of simulation and determining a convenient
time step taken as a fraction of the particle relaxation time. We consider an ensemble of 100
particles (np) and 100 time steps (nt).

1

%ParticleBrownianDiffusion

%Particle Browning diffusion

%Clear command window and memory

clc

clear

%Constants of simulation

p=101000; %Air pressure [Pa]

R=8.314; %Universal gas constant [J K^-1 mol^-1]

M=28.966e-3; %Air molecular weight [kg mol^-1]

rhop=1.777; %Particle density [kg m^-3]

k=1.38e-23; %Boltzmann constant [J K^-1]

Dp=1e-7; %Particle diameter [m]

T=300; %Air temperature [K]

mu=1.846e-5; %Air dynamic viscosity [kg m^-1 s^-1]

rho=1.777; %Air density [kg m^-3]

np=100; %Number of particles in ensemble

nt=100; %Number of time advances

%Calculate mean free path, Knudsen number, slip correction, and mass

lambda=...

Kn=...

Cc=...

mp=...

%Calculate particle characteristic time

tau=...

%Set time step as 10% of the smallest particle characteristic time

dt=0.1*tau;

%Define time vector

t=0:dt:(nt-1)*dt;

We then define the position matrices, and not vectors, because now for each time step we want to
keep track of individual particle positions. For particle velocities and accelerations, we only define
vectors since we only need to ‘remember’ those for the last time step.

%Define position matrices and initialize to zero

%The two dimensional matrix contains position as a function of time

x=zeros(nt,np); %x Position vector [m]

y=...

z=...

%Define acceleration vectors for the most recent time step

ax=zeros(1,np);

2

ay=...

az=...

vx=zeros(1,np);

vy=...

vz=...

vxold=zeros(1,np);

vyold=...

vzold=...

Then we iterate through time steps, only applying a Brownian acceleration in the three coordinates.

%Loop through the time steps for the entire particle ensemble

%Update particle position and velocity

for i=2:nt

for j=1:np

%Append accelerations by Brownian force

S0=(216*mu*k*T)/((pi^2*Dp^5*rhop^2)*Cc);

ax(j)=randn(1)*((pi*S0/dt)^0.5);

ay(j)=...

az(j)=...

%Find new velocities

vx(j)=vxold(j)+ax(j)*dt;

vy(j)=...

vz(j)=...

%Find new position

x(i,j)=x(i-1,j)+vx(j)*dt;

y(i,j)=...

z(i,j)=...

%Update old velocities for next iteration

vxold(j)=vx(j);

vyold(j)=...

vzold(j)=...

end

end

After the computation is done, we wish to plot, in three dimensions, the distribution of the
ensemble of particles in space in three times of t(1), t(nt/2), and t(nt). For this we can
use the plot3 function. For ease of comparison we fix the axes limits using the axis specifier.
Complete the following script to achieve this. If everything goes well, you should get the following
figures.

figure

plot3(x(1,:),y(1,:),z(1,:),’bo’,’MarkerSize’,5);

xlabel(’x [m]’,’FontSize’,20);

3

ylabel(’y [m]’,’FontSize’,20);

zlabel(’z [m]’,’FontSize’,20);

axis(3e-8*[-1 1 -1 1 -1 1]);

figure

...

figure

...

By looking at the range on x, y, and z axes we realize the the diffusion has just started because
the spatial spread of the particles is a fraction of the particle diameter.

Subsequently we wish to calculate and plot the mean square distance of the ensemble of the
particles in the x direction from the origin for particle sizes Dp=1e-9, 1e-8, 1e-7, and 1e-6 m.
We wish to do this calculation using both simulation and the theoretical formula. Append the
following script to perform this task. In order to be able to show data on a wider range we use a
logarithm vertical axis by MATLAB function semilogy. You should obtain the following plots.

%Define vectors for mean square distance of particle ensemble from origin

x2=zeros(nt,1);

x2theory=zeros(nt,1);

%We now calculate mean square distance of particle ensemble from origin

for i=1:nt

x2(i)=mean(x(i,:).^2);

x2theory(i)=2*k*T*Cc*t(i)/(3*pi*mu*Dp);

end

%Plot the simulated and theoretical mean square distance of partilces from origin

figure

semilogy(t,x2,’k-’,’LineWidth’,3);

hold on

semilogy(t,x2theory,’k:’,’LineWidth’,3);

xlabel(’t [s]’,’FontSize’,20);

ylabel(’<x^2> [m^2]’,’FontSize’,20);

h_legend=legend(’Simulation’,’Theory’);

set(h_legend,’FontSize’,20);

Notice that the two curves only agree in one point. At early times the simulation under-predicts the
theoretical prediction, while at large times the simulation over-predicts the theoretical prediction.
It appears that with a constant time step, chosen as a fraction of the particle relaxation time, the
simulation is doomed to show different values from the theory. This shows one of the limitations of
this simulation, which cannot accurately predict Brownian diffusion. In the presence of turbulent
diffusion (usually the case), however, the Brownian diffusion is very insignificant compared to
turbulent mechanisms which randomly disperse particles. Therefore, it is not necessary to simulate

4

Brownian motion. Nevertheless, this technique demonstrates the rough dispersion behaviour as a
function of particle size and provides a qualitative result.

References

[Li and Ahmadi, 1992] Li, A. and Ahmadi, G. (1992). Dispersion and deposition of spherical
particles from point sources in turbulent channel flow. Aerosol Sci. Technol., 16:209–226.

[Ounis et al., 1991] Ounis, H., Ahmadi, G., and McLaughlin, J. B. (1991). Brownian diffusion of
submicrometer particles in the viscous sublayer. J. Colloid Interf. Sci., 143(1):266–277.

5

Figure 1: Distribution of an ensemble of 100 particles with diameter Dp=1e-7 m at t(1), t(nt/2),
and t(nt).

6

Figure 2: Time evolution of the mean square distance for ensemble of particles from the origin.
Particle diameters are Dp=1e-9 m (top left), Dp=1e-8 m (top right), Dp=1e-7 m (bottom left),
and Dp=1e-6 m (bottom right).

7

ENGG*4810: Control of Atmospheric Particulates

Particle Dispersion in a Turbulent Jet
Amir A. Aliabadi

October 7, 2019

1 Introduction

In this lab we are going to simulate turbulent dispersion of particles in a jet using the Random
Walk Model (RWM) and the concept of Eddy Interaction (EI). Jets belong to a class of flows
known as free-shear flows [Hussein et al., 1994]. Such flows exhibit sharp velocity gradients but
are not constrained by walls or other types of boundaries, the reason they are called free-shear
flows. Jets occur in numerous natural or human made processes such as sneezing, pollen release,
fuel injection engines, aircraft propulsion, and more. Most jets are self-similar in structure, very
much analogous to similarity in geometry. For example, two triangles are similar if they have the
same angles. Jets too, have similar properties, no matter how far they are probed from the point
of injection.

Figure below shows schematic of a self-similar jet. Note that a virtual origin, x0, for the jet is
defined for the point where the self-similar behaviour for the jet begins. It is assumed that the
injecting nozzle diameter is D.

Figure 1: Schematic of a self-similar jet.

Here two coordinate systems can be used to specify jet flow dynamics. 1) In the cylindrical

1

coordinate system, x is the direction of the axial propagation of the jet, and r and θ, specify the
radial and angle positions in the transverse direction. 2) In the Cartesian coordinate system, x
is still the the direction of the axial propagation of the jet, but y and z directions are fixed. z is
usually chosen in such a way that gravitational acceleration points in the −z direction. y is the
horizontal direction. In both coordinate systems, fluid velocities u− v−w can represent the axial
and transverse velocities corresponding to x− r− θ or x− y− z coordinate systems, respectively.
The velocities in the two coordinate systems can be related such that

ucar = ucyl (1)

vcar = vcyl cos(θ) − wcyl sin(θ) (2)

wcar = vcyl sin(θ) + wcyl cos(θ) (3)

For a self-similar steady jet, the following linear correlation between the mean centre line velocity
in the axial direction Uc, initial mean velocity in the axial direction at the origin U0, nozzle
diameter D, and distance from the nozzle x has been established:

U0

Uc

=
1

Bu

(x
D

− x0
D

)
(4)

where Bu is an empirical constant found to be 5.8 by experiments. The dimensionless origin is
found to be x0

D
= 4. Figure below shows contour plots of velocity magnitude, turbulent kinetic

energy, and dissipation rate for a self-similar jet. For this jet, it is assumed that the nozzle diameter
is D = 0.01 m and that a total gas volume of V = 0.0005 m3 is injected over time t = 1 s, which
allows calculation of injection velocity. The axial domain x starts from x = 6D = 0.06 m or six
nozzle diameters.

A similarity variable has been found, experimentally, to describe mean flow turbulence properties
of a self-similar jet

η =
r

x− x0
(5)

where r is the radial distance from the centre line of the jet. Numerous functions have been fitted
to describe round jets [Hussein et al., 1994], where model fitting to experimental data is achieved
by method of least squares to all measured profiles with a similarity variable and fitted an even
function given below to calculate mean flow and turbulent properties,

p(η) =
[
C0 + C2η

2 + C4η
4 + ...

]
exp

(
−Aη2

)
. (6)

The multiplication of the polynomial and exponential function provides an excellent fit over the
range in which data were taken (η < 0.2), and care must be given not to apply these fits beyond
this range. Table below shows the fitting parameters.

2

Figure 2: Contours of velocity magnitude, turbulent kinetic energy, and dissipation rate for a
self-similar jet.

2 Simulation Matrix

We wish to simulate turbulent dispersion of np = 200 particles of two different diameters, Dp [m],
in the above jet for two injection volumes, Vinj. Table below shows the simulation matrix.

3 MATLAB Script

As usual, we begin be defining the simulation constants and the simulation time step. Complete
the following script

%TurbulentJetDispersion

%Particle dispersion in a jet under forces of

%gravity, buoyancy, drag, and turbulence

%Clear command window and memory

clc

clear

3

Table 1: Constants to determine turbulent properties of a self-similar jet [Hussein et al., 1994]
p(η) C0 C2 C4 C6 A

U/Uc 1.0 –1.925 0.0 0.0 63

u′2/Uc
2

7.778e–2 2.79e1 –2.02e3 4.3e5 257

v′2/Uc
2

5.457e–2 0.355 –4.298e1 0.0 89

w′2/Uc
2

5.78e–2 –1.71 2.73e–1 0.0 42

u′v′/Uc
2

4.375e–1 –3.931e1 1.55e2 1.342e4 90

ε/
[
Uc

3
/(x− x0)

]
0.3549 11.99 –1635 43470 201

Table 2: Simulation matrix
Simulation 1 2 3 4
Dp [m] 1e–6 1e–5 1e–6 1e–5
Vinj [m3] 0.5e–3 0.5e–3 1.0e–3 1.0e–3

%Constants of simulation

g=9.81; %Gravitational acceleration [m s^-2]

p=101000; %Air pressure [Pa]

R=8.314; %Universal gas constant [J K^-1 mol^-1]

M=28.966e-3; %Air molecular weight [kg mol^-1]

rhop=1000; %Particle density [kg m^-3]

Dp=1e-6; %Particle diameter [m]

T=300; %Air temperature [K]

mu=1.846e-5; %Air dynamic viscosity [kg m^-1 s^-1]

rho=1.777; %Air density [kg m^-3]

np=200; %Number of particles in ensemble

nt=40000; %Number of time advances

tinj=1.0; %Injection time [s]

Vinj=0.5e-3; %Total amount of air injected [m^3]

Dnoz=0.01; %Nozzle diameter [m]

Bu=5.8;

Cmu=0.09;

%Calculate mean free path, Knudsen number, slip correction, and mass

lambda=...

Kn=...

Cc=...

mp=...

%Calculate particle characteristic time

tau=...

%Set time step as 10% of the particle characteristic time

dt=0.1*tau;

4

Next we define position matrices for particles to have the x, y, and z coordinates of each individual
particle at any time step. We position all particles, initially at x(1,:)=6*Dnoz, but we randomize
particle placement in the y and z coordinates, although not far from the jet centre line. Complete
the following script

%Define position matrices and initialize to zero

%The two dimensional matrix contains position as a function of time

x=zeros(nt,np); %x Position vector [m]

y=...

z=...

%Initialize particle axial position at 6 times nozzle diameter

x(1,:)=6*Dnoz;

%Randomize the lateral position of particles

y(1,:)=0.1*Dnoz*(0.5-rand(1,np));

z(1,:)=0.1*Dnoz*(0.5-rand(1,np));

Next we calculate jet velocity at nozzle exit and the jet centre line velocity at a distance of six
nozzle diameters. Insert the following code

%Calculate jet centerline velocity at the onset of self-similar behavior

U0=Vinj/(pi*(Dnoz/2)^2*tinj);

%Calculate jet center velocity at the onset of self-similar region

Uc=(U0*Bu)/((6*Dnoz/Dnoz)-4.0);

Now we are ready to begin iterating, first through number of particles and then through time steps.
First we initialize the particle velocities. Like particle location, we randomize particle velocities.
We also initialize eddy interaction, life, and crossing times with large enough values to be able run
the algorithm properly at start. Complete the following script

%Loop through the time steps for the entire particle ensemble

%Update particle position and velocity

for j=1:np

%Initialize particle velocity at the jet center with jet velocity

%Calculate jet center velocity at the onset of self-similar region

Uc=(U0*Bu)/((6*Dnoz/Dnoz)-4.0);

%Initialize velocity to this center line velocity plus fluctuations

vx=Uc+0.0001*Uc*(0.5-rand());

vy=0.0001*Uc*(0.5-rand());

vz=0.0001*Uc*(0.5-rand());

vxold=vx;

vyold=...

5

vzold=...

%Start with a "large" eddy interaction, life, and crossing times [s]

%to make sure adequate if statements are executed

ti=1;

te=1;

tc=1;

Next we iterate through time steps for each particle. The loop begins we setting the time step to
a fraction of the particle relaxation time and resetting the particle accelerations. Complete the
following script

for i=2:nt

%Set time step as 10% of the particle characteristic time

dt=...

%Reset acceleration terms

ax=...

ay=...

az=...

Next we append acceleration in the z direction with gravity and buoyancy forces. Complete the
following script

%Append accelerations by gravity force

az=...

%Append accelerations by buoyancy force

az=...

Next we calculate the turbulent eddy velocity fluctuations. Note that this is done only if the eddy
interaction time exceeds the value of eddy life or crossing time for the most recent eddy. If this is
true, then a new eddy is sampled and used and the eddy interaction time is reset. Otherwise the
eddy interaction time compounds until it exceeds the value of eddy life or crossing times. Insert
the following script

%Calculate the turbulent fluctuations if necessary

if ((ti >= te) || (ti >= tc))

%Set time step as 10% of the particle characteristic time

dt=0.1*tau;

%Reset the eddy interaction time for the particle

ti=0;

%Calculate jet centreline mean velocity for the particle

%as a function of xold, yold, and zold

Uc=(((x(i-1,j)/Dnoz)-4.0)/(U0*Bu))^-1;

6

%Calculate particle’s radial position from the jet center line

rold=(y(i-1,j)^2+z(i-1,j)^2)^0.5;

%Calculate fluctuating velocities for the particle

%in cylindrical coordinate

C0=7.778e-2;

C2=2.79e1;

C4=-2.02e3;

C6=4.3e5;

A=257;

up2=Uc^2*(C0+C2*(rold/x(i-1,j))^2+C4*(rold/x(i-1,j))^4+...

C6*(rold/x(i-1,j))^6)*exp(-A*(rold/x(i-1,j))^2);

C0=5.457e-2;

C2=0.355;

C4=-4.298e1;

C6=0.0;

A=89;

vp2=Uc^2*(C0+C2*(rold/x(i-1,j))^2+C4*(rold/x(i-1,j))^4+...

C6*(rold/x(i-1,j))^6)*exp(-A*(rold/x(i-1,j))^2);

C0=5.78e-2;

C2=-1.71;

C4=2.73e-1;

C6=0;

A=42;

wp2=Uc^2*(C0+C2*(rold/x(i-1,j))^2+...

C4*(rold/x(i-1,j))^4+...

C6*(rold/x(i-1,j))^6).*exp(-A*(rold/x(i-1,j))^2);

%Find angle in the polar cylindrical coordinate system

if (y(i-1,j)>=0)

theta=asin(z(i-1,j)/rold);

else

theta=pi-asin(z(i-1,j)/rold);

end

sqrtup2=(abs(up2))^0.5;

sqrtvp2=(abs(vp2))^0.5;

sqrtwp2=(abs(wp2))^0.5;

%Generate Gaussian distributed random fluctuating fluid velocities

%up and vp are correlated with a coefficient of 0.4

7

up=randn*sqrtup2;

vp=0.4*up+0.9163*randn*sqrtvp2;

wp=randn*sqrtwp2;

%Calculate turbulent kinetic energy for fluid

%at the location of particle

k=0.5*(sqrtup2^2+sqrtvp2^2+sqrtwp2^2);

%Calculate turbulent dissipation rate for fluid

%at the location of particle

C0=0.3549;

C2=11.99;

C4=-1635;

C6=43470;

A=201;

e=abs(Uc^3/(x(i-1,j))*(C0+C2*(rold/x(i-1,j))^2+...

C4*(rold/x(i-1,j))^4+...

C6*(rold/x(i-1,j))^6)*exp(-A*(rold/x(i-1,j))^2));

%Calculate eddy length scale and life time

le=2*(Cmu)^(3/4)*(k)^(3/2)/e;

te=2*(3/2)^0.5*(Cmu)^(3/4)*k/e;

%Calculate fluid instantaneous velocities at particle location

C0=1.0;

C2=-1.925;

C4=0.0;

C6=0.0;

A=63;

u=Uc*((C0+C2*(rold/x(i-1,j))^2+C4*(rold/x(i-1,j))^4+...

C6*(rold/x(i-1,j))^6)*exp(-A*(rold/x(i-1,j))^2))+up;

%Transform fluctuating velocity components

%from cylindrical to cartesian coordinates

%using rotation matrix

v=vp*cos(theta)-wp*sin(theta);

w=vp*sin(theta)+wp*cos(theta);

%Calculate relative magnitude of fluid to particle velocity

urel=((u-vxold)^2+(v-vyold)^2+(w-vzold)^2)^0.5;

%Calculate eddy crossing time

if (1-le/(tau*urel))>0

tc=-tau*log(1-le/(tau*urel));

8

else

tc=te;

end

%Lower dt to 0.05 of the minimum of eddy life and crossing times

if (dt > 0.05*min(te, tc))

dt=0.05*min(te, tc);

end

else

%Update eddy interaction time

ti=ti+dt;

end

Note that we have accounted for a coordinate system transformation from cylindrical to cartesian
system. There are also other subtleties in the above script that we leave you to investigate and
analyze.

Now we include the effect of drag. Since there is no guarantee that the previous snippet of script
runs at every iteration, we must calculate the necessary parameters again. Complete the following
script

%Now include the effect of drag

%Calculate jet centreline mean velocity for the particle

%as a function of xold, yold, and zold

Uc=(((x(i-1,j)/Dnoz)-4.0)/(U0*Bu))^-1;

%Calculate fluid instantaneous velocities at particle location

C0=1.0;

C2=-1.925;

C4=0.0;

C6=0.0;

A=63;

%Calculate particle’s radial position from the jet center line

rold=(y(i-1,j)^2+z(i-1,j)^2)^0.5;

u=Uc*((C0+C2*(rold/x(i-1,j))^2+C4*(rold/x(i-1,j))^4+...

C6*(rold/x(i-1,j))^6)*exp(-A*(rold/x(i-1,j))^2))+up;

%Transform fluctuating velocity components

%from cylindrical to cartesian coordinates

%using rotation matrix

v=vp*cos(theta)-wp*sin(theta);

w=vp*sin(theta)+wp*cos(theta);

9

%Calculate relative magnitude of fluid to particle velocity

urel=((u-vxold)^2+(v-vyold)^2+(w-vzold)^2)^0.5;

%Calculate particle’s Reynolds number

Re=...

%Calculate the coefficient of drag based on this Reynolds number

...

%Append accelerations by drag accelerations

ax=ax-(1/mp)*pi*CD*rho*Dp^2*(vxold-u)*abs(vxold-u)/(8*Cc);

ay=...

az=...

Finally, update new velocities, positions, and old velocities. Complete the following script

%Find new velocities

vx=vxold+ax*dt;

vy=...

vz=...

%Find new position

x(i,j)=x(i-1,j)+vx*dt;

y(i,j)=...

z(i,j)=...

%Update old velocities for next iteration

vxold=vx;

vyold=...

vzold=...

end

end

Now plot the particle positions for the entire ensemble of particles at different times in the x-z

plane by the following script.

figure

plot(x(100,:),z(100,:),’ko’,’LineWidth’,3);

hold on

plot(x(1000,:),z(1000,:),’bo’,’LineWidth’,3);

plot(x(10000,:),z(10000,:),’ro’,’LineWidth’,3);

plot(x(20000,:),z(20000,:),’go’,’LineWidth’,3);

plot(x(40000,:),z(40000,:),’yo’,’LineWidth’,3);

xlabel(’x [m]’,’FontSize’,20);

ylabel(’z [m]’,’FontSize’,20);

h_legend=legend(’nt=100’, ’nt=1000’, ’nt=10000’, ’nt=20000’, ’nt=40000’);

set(h_legend,’FontSize’,20);

Make another plot for the dispersion in the x-y plane. In addition to plotting particle dispersion

10

for the entire population at selected number of time steps, one can plot dispersion for a selected
number of particles at all time steps in order to observe the motion of individual particles as
they interact with the turbulent jet. Write a script to generate the entire particle trajectory for
particles 1, 50, 100, 150, and 200, in both x-z and x-y planes. Now experiment with the script to
complete the simulation matrix. You should obtain results similar to the following figures.

Comment on the following points and discuss the following questions.

• Try to explain the effect of particle size on axial penetration, i.e. for a given jet, which size
particles penetrate the most in the x direction?

• Answer the above question for dispersion in y and z directions?

• Try to explain the effect of jet velocity on dispersion in the three directions.

• Comment if you can observe the effect of different eddies on dispersion of individual particles
on different trajectories over the entire number of time steps. In which direction is this effect
clearly seen, i.e. x, y, or z?

• In many particular instances shown, a particle is moving in the negative x direction. How
is this possible?

• Regarding particle deflection in the y direction, comment if there is a preferred direction for
deflection given particle’s initial position in the y direction?

• Comment on computational cost and other possible limits to simulate particle dispersion
using the RWM.

References

[Hussein et al., 1994] Hussein, H. J., Capp, S. P., and George, W. K. (1994). Velocity measure-
ments in a high-Reynolds-number momentum-conserving, axisymmetric, tubulent jet. J. Fluid
Mech., 258:31–75.

11

Figure 3: Particle dispersion for the entire particle ensemble at selected number of time steps
(top) and particle dispersion for selected number of particles over the entire number of time steps
(bottom) for Dp=1e-6 m and Vinj=0.5e-3.

12

Figure 4: Particle dispersion for the entire particle ensemble at selected number of time steps
(top) and particle dispersion for selected number of particles over the entire number of time steps
(bottom) for Dp=1e-5 m and Vinj=0.5e-3.

13

Figure 5: Particle dispersion for the entire particle ensemble at selected number of time steps
(top) and particle dispersion for selected number of particles over the entire number of time steps
(bottom) for Dp=1e-6 m and Vinj=1.0e-3.

14

Figure 6: Particle dispersion for the entire particle ensemble at selected number of time steps
(top) and particle dispersion for selected number of particles over the entire number of time steps
(bottom) for Dp=1e-5 m and Vinj=1.0e-3.

15

ENGG*4810: Control of Atmospheric Particulates

Particle Collection Efficiency of a Laminar Settling Chamber
Amir A. Aliabadi

November 13, 2017

1 Introduction

In this lab we are going to simulate the particle collection efficiency in a settling chamber. Laminar
settling chambers are essentially two dimensional flow systems. For simplicity we will perform a
2D simulation. The chamber has a length of L = 1 m and a height of H = 0.05 m. The mean
velocity in this chamber is u = 0.25 m s−1. Assuming the width of the chamber W is equal to its
height H, the settling chamber Reynolds number can be calculated as

Rec =
4rhρu

µ
=

4
(

H×H
2(H+H)

)
ρu

µ
=
Hρu

µ
(1)

and must be checked to confirm laminar flow. From the lecture material we learn that the axial
velocity profile in a laminar settling chamber can be given as

u =
3

2
u

[
1−

(
2z

H

)2
]

(2)

Here x is the direction of the axial propagation of the flow and z is the vertical axis against which
gravity acts. Also from the lectures we learn that the theoretical particle collection efficiency of a
laminar settling chamber can be calculated given physical parameters such that

η(Dp) =
vtL

uH
(3)

where vt is terminal velocity given as

vt =
ρpgD

2
p

18µ
(4)

This theoretical estimate is only valid if particle is small enough so that the particle Reynolds
number Re < 0.1 but still large enough so that non continuum effects can be ignored, i.e. Cc ' 1.

1

2 Simulation Matrix

We wish to simulate particle collection efficiency for np = 200 particles of three different diameters,
Dp [m], in the above settling chamber. Table below shows the simulation matrix.

Table 1: Simulation matrix
Simulation 1 2 3
Dp [m] 10e–6 15e–6 20e–6

3 MATLAB Script

As usual, we begin be defining the simulation constants and the simulation time step. We will
need to choose a large enough number of time steps to ensure the seeded particles in the flow will
exit the chamber or get deposited by the end of the simulation. Complete the following script

%LaminarSettlingChamber

%Particle collection efficiency of a laminar settling chamber

%Clear command window and memory

clc

clear

%Constants of simulation

g=9.81; %Gravitational acceleration [m s^-2]

p=101000; %Air pressure [Pa]

R=8.314; %Universal gas constant [J K^-1 mol^-1]

M=28.966e-3; %Air molecular weight [kg mol^-1]

rhop=1000; %Particle density [kg m^-3]

Dp=10e-6; %Particle diameter [m]

T=300; %Air temperature [K]

mu=1.846e-5; %Air dynamic viscosity [kg m^-1 s^-1]

rho=1.2; %Air density [kg m^-3]

np=200; %Number of particles in ensemble

nt=200000; %Number of time advances

L=1; %Settling chamber length [m] along x-axis

H=0.05; %Settling chamber height [m] along z-axis

ubar=0.25; %Mean velocity across the plates [m s^-1]

%Calculate mean free path, Knudsen number, slip correction, and mass

lambda=...

Kn=...

Cc=...

mp=...

2

%Calculate particle characteristic time

tau=...

%Set time step as 10% of the particle characteristic time

dt=...

Next, we write a script to calculate the Reynolds number in the settling chamber to ensure the flow
is laminar. Subsequently we perform a simple calculation to find the theoretical particle collection
efficiency. Complete the following script in such a way that the settling chamber Reynolds number
and collection efficiency get printed on the command window of MATLAB.

%Calculate flow Reynolds number in settling chamber to ensure laminar flow

ReC=...

%First calculate and print the terminal velocity

vt=...

%With this velocity calculate the theoretical particle collection efficiency

etaTheory=...

To simulate particle collection efficiency, we need a counter variable to be able to increment it
within the code every time a particle gets deposited on the bottom plate of the the settling
chamber. Enter the following script to initialize a counter variable.

%Initialize the number of particles collected

npCollected=0;

Next we define position matrices for particles to have the x and z coordinates of each individual
particle at any time step. Remember that this is a 2D simulation so there is no y position
matrix. We position all particles, initially at x(1,:)=0, but we randomize particle placement in
the z coordinates according to a uniform distribution. This places particles uniformly across the
settling chamber. Complete the following script.

%Define position matrices and initialize to zero

%The two dimensional matrix contains position as a function of time

x=zeros(nt,np); %x Position vector [m]

z=...

%Randomize the vertical (z) position of particles

z(1,:)=H*(0.5-rand(1,np));

Now we are ready to begin iterating, first through number of particles and then through time
steps. First we initialize the particle velocities to zero, and then we calculate air velocity at the
location of each particle. The only velocity component for the air is the axial velocity. Complete
the following script.

3

%Loop through the time steps and entire particle ensemble

for j=1:np

%Initialize the particle velocity components

vxold=...

vzold=...

%Initialize the air velocity components at particle location

u=(3/2)*ubar*(1-(2*z(1,j)/H)^2);

w=...

Within the time advance loop, first we initialize accelerations to zero. Subsequently we append
the vertical acceleration by gravity and buoyancy forces. Complete the following script.

for i=2:nt

%Reset acceleration terms

ax=...

az=...

%Append accelerations by gravity force

az=...

%Append accelerations by buoyancy force

az=...

Next we need to append the acceleration components by drag forces. First we need to calculate
the relative magnitude of the air to particle velocity to be able to calculate the particle Reynolds
number. Subsequently we calculate the particle Reynolds number and then the coefficient of drag.
This helps us to append the acceleration terms. Complete the following script.

%Calculate relative magnitude of air to particle velocity

urel=((u-vxold)^2+(w-vzold)^2)^0.5;

%Calculate particle’s Reynolds number

Re=...

%Calculate the coefficient of drag based on this Reynolds number

if (Re < 0.1)

CD=...

elseif (Re < 2)

CD=...

elseif (Re < 500)

CD=...

elseif (Re < 2e5)

CD=...

end

4

%Append accelerations by drag accelerations

ax=ax-(1/mp)*pi*CD*rho*Dp^2*(vxold-u)*abs(vxold-u)/(8*Cc);

az=...

Now we can update the particle velocities and positions given the total acceleration in each com-
ponent. Complete the script below.

%Find new particle velocities

vx=...

vz=...

%Find new particle positions

x(i,j)=...

z(i,j)=...

Now we need to determine the fate of each particle in case it gets deposited at the bottom plate,
i.e. collected, or in case it exists the settling chamber without being deposited. If the particle
travels a distance greater than the settling chamber length, then we set its axial position equal to
the length of the settling chamber, and then break the inner time loop and move on to the next
particle. If the particle travels all the way to the bottom plate, then we set its vertical position
equal to the position of the bottom plate, increment the counter variable, and then break the inner
time loop and move on to the next particle. This coding strategy, significantly speeds up the code
because we do not have to complete all the iterations. Insert the following script.

%If the particle has exited the settling chamber, it has not been

%collected. In this case break the inner loop and move on to the next

%particle

if (x(i,j)>L)

x(i,j)=L;

break;

end

%If the particle has settled at the bottom of the chamber

%Increment the npCollected and break the inner loop and move on to

%the next particle

if (z(i,j)<-H/2)

z(i,j)=-H/2;

npCollected=npCollected+1;

break;

end

We then update the particle velocities and the air velocity at particle’s location for the next time
iteration. Complete the following script

%Update old velocities for next iteration

vxold=...

vzold=...

5

%Update the air velocity component in x-axis at particle location

u=...

end

end

Finally, we can simply calculate the particle collection efficiency. Insert the following script.

%Now calculate the particle collection efficiency based on the simulation

etaSimulation=npCollected/np

As usual, we can plot representative results, such as location of all particles at selected time steps,
or trajectories of individual particles at all time steps. Insert the following script.

figure

plot(x(1,:),z(1,:),’ko’);

hold on

plot(x(1/1000*nt,:),z(1/1000*nt,:),’bo’);

plot(x(1/100*nt,:),z(1/100*nt,:),’ro’);

plot(x(1/10*nt,:),z(1/10*nt,:),’co’);

plot(x(nt,:),z(nt,:),’yo’);

axis([0 1 -0.025 0.025]);

xlabel(’x [m]’,’FontSize’,20);

ylabel(’z [m]’,’FontSize’,20);

h_legend=legend(’Timestep=1’, ’Timestep=1/1000*nt’, ’Timestep=1/100*nt’,...

’Timestep=1/10*nt’, ’Timestep=nt’);

set(h_legend,’FontSize’,20);

figure

plot(x(:,1),z(:,1),’ko’);

hold on

plot(x(:,1/4*np),z(:,1/4*np),’bo’);

plot(x(:,1/2*np),z(:,1/2*np),’ro’);

plot(x(:,3/4*np),z(:,3/4*np),’co’);

plot(x(:,np),z(:,np),’yo’);

axis([0 1 -0.025 0.025]);

xlabel(’x [m]’,’FontSize’,20);

ylabel(’z [m]’,’FontSize’,20);

h_legend=legend(’Particle=1’, ’Particle=1/4*np’, ’Particle=1/2*np’,...

’Particle=3/4*np’, ’Particle=np’);

set(h_legend,’FontSize’,20);

Now run your code to complete the simulation matrix. You should get results similar to the
following table and figures. Ensure that by the final simulation time step all particles either
deposit on the bottom plate or leave the settling chamber. This can be easily verified by lack of
particles in the plots at the final time step.

6

Table 2: Simulation results
Simulation 1 2 3
Dp [m] 10e–6 15e–6 20e–6
ReC 812.57 812.57 812.57
etaTheoretical 0.2362 0.5314 0.9447
etaSimulation 0.3100 0.5600 0.8750

Comment on the following points and discuss the following questions.

• Try to explain the effect of particle size on the collection efficiency of the settling chamber.

• We did not simulate the Brownian dispersion effect for the particles in this lab. Discuss if
accounting for Brownian dispersion effects would drastically change our results.

• Discuss any potential sources for the mismatch between the theoretical and simulated particle
efficiency.

• By doing this lab, would you think laminar settling chambers are suitable to remove particles
with the following sizes in diameter: Dp=1e-6, 5e-6, 10e-6, 15e-6, 20e-6, 50e-6 m?

• If laminar settling chambers are to be used to remove particles from large quantity of air,
i.e. higher flow rates, what impact does this have on the size of the settling chamber?

7

Figure 1: Particle dispersion and collection for the entire particle ensemble at selected number of
time steps (left) and particle dispersion and collection for selected number of particles over the
entire number of time steps (right) for Dp=10e-6 m (top), Dp=15e-6 m (middle), Dp=20e-6 m
(bottom).

8

ENGG*4810: Control of Atmospheric Particulates

Particle Collection Efficiency of a Turbulent Settling Chamber
Amir A. Aliabadi

October 30, 2018

1 Introduction

In this lab we are going to simulate the particle collection efficiency in a turbulent settling chamber.
For simplicity we will perform a 2D simulation. The chamber has a length of L = 1 m and a height
of H = 0.05 m. The mean velocity in this chamber is u = 2 m s−1. Assuming the width of the
chamber W is equal to its height H, the settling chamber Reynolds number can be calculated as

Rec =
4rhρu

µ
=

4
(

H×H
2(H+H)

)
ρu

µ
=
Hρu

µ
(1)

and must be checked to confirm turbulent flow. From the lectures we learn that the theoreti-
cal particle collection efficiency of a turbulent settling chamber can be calculated given physical
parameters such that

η(Dp) = 1− exp

(
−vtL
uH

)
(2)

where vt is terminal velocity given as

vt =
ρpgD

2
p

18µ
(3)

This theoretical estimate is only valid if particle is small enough so that the particle Reynolds
number Re < 0.1 but still large enough so that non continuum effects can be ignored, i.e. Cc ' 1.

To simulate flow field in the settling chamber we have used the open source Computational Fluid
Dynamics (CFD) software OpenFOAM 3.0. A standard k − ε turbulence model was used to give
mean airflow velocity in the x and z directions, turbulent kinetic energy, and the turbulent kinetic
energy dissipation rates. The computational domain was discretized in to nx×nz = 100× 20 cells
and shown below. Note that for this flow a y+ ' 1 corresponds to mesh spacing near the walls at
∆ymin = 0.00012 m resolution. Typical wall functions allow the grid spacing normal to the wall
boundaries, customary defined in the y direction as opposed to our case which is in the z direction,

1

be as large as ∆y = 250∆ymin and for our case we need a minimum of ∆y = 250∆ymin = 250 ×
0.00012m = 0.03m. Our grid spacing results in ∆y = H/nz = 0.05m/20 = 0.0025m << 0.03m, as
a result our grid resolution is adequate for the simulation very conservatively.

Figure 1: Computational domain for CFD simulations using OpenFOAM 3.0. The turbulent settling
chamber is considered as a 2D geometry with flow in the +x direction and gravity acting in the -z

direction.

The solutions obtained for velocity in the x and z directions is shown below. Contrary to the
convenient assumption the velocity in the x direction is constant across the channel, we see that
the simulation captures a growing boundary layer at the walls so that the airflow velocity is
reduced. In addition, airflow velocity in the z direction is now entirely zero, but exhibits a small
positive or negative value, which is nevertheless two orders of magnitude smaller than velocity in
the x direction.

The simulated turbulent kinetic energy and kinetic energy dissipation rate is shown below. Observe
that the turbulent kinetic energy and dissipation rate are highest near the walls, where turbulence
is generated. In addition observe that the turbulent boundary layer grows downstream of the
settling chamber.

Given these flow fields, we will simulate particle dispersion and collection using an Eddy Interaction
model introduced earlier. The concentration of particles is low enough to have no major impact
on airflow. With this assumption airflow and particle dispersion simulations can be performed
separately. This is also known as one way coupling, otherwise, if the particle concentration is very
high a two way coupling model is necessary where the airflow and particle dispersion simulations

2

are now separable.

2 Simulation Matrix

We wish to simulate particle collection efficiency for np = 200 particles of two different diameters,
Dp [m], in the above settling chamber. Table below shows the simulation matrix.

Table 1: Simulation matrix
Simulation 1 2
Dp [m] 20e–6 40e–6

3 MATLAB Script

As usual, we begin be defining the simulation constants and the simulation time step. We will
need to choose a large enough number of time steps to ensure the seeded particles in the flow will
exit the chamber or get deposited by the end of the simulation. Complete the following script

%TurbulentSettlingChamber

%Particle collection efficiency of a turbulent settling chamber

%Using the Eddy Interaction model

3

Figure 2: Solutions for CFD analysis in the turbulent settling chamber.

%Clear command window and memory

clc

clear

%Constants of simulation

g=9.81; %Gravitational acceleration [m s^-2]

p=101000; %Air pressure [Pa]

R=8.314; %Universal gas constant [J K^-1 mol^-1]

M=28.966e-3; %Air molecular weight [kg mol^-1]

rhop=1000; %Particle density [kg m^-3]

Dp=40e-6; %Particle diameter [m]

T=300; %Air temperature [K]

mu=1.846e-5; %Air dynamic viscosity [kg m^-1 s^-1]

rho=1.2; %Air density [kg m^-3]

np=200; %Number of particles in ensemble

nt=200000; %Number of time advances

L=1; %Settling chamber length [m] along x-axis

H=0.05; %Settling chamber height [m] along z-axis

ubar=2; %Mean velocity across the plates [m s^-1]

nx=100; %Number of cells in fluid domain in the x direction

nz=20; %Number of cells in fluid domain in the z direction

Cmu=0.09;

4

%Calculate mean free path, Knudsen number, slip correction, and mass

lambda=...

Kn=...

Cc=...

mp=...

%Calculate particle characteristic time

tau=...

%Set time step as 10% of the particle characteristic time

dt=...

Next, we write a script to calculate the Reynolds number in the settling chamber to ensure the flow
is turbulent. Subsequently we perform a simple calculation to find the theoretical particle collection
efficiency. Complete the following script in such a way that the settling chamber Reynolds number
and collection efficiency get printed on the command window of MATLAB.

%Calculate flow Reynolds number in settling chamber to ensure laminar flow

ReC=...

%First calculate and print the terminal velocity

vt=...

%With this velocity calculate the theoretical particle collection efficiency

etaTheory=...

There is now some work involved to properly read the CFD simulation results from text files. First
calculate the discretization lengths in the x and z directions. Then define the coordinates for the
centre of each computational cell and store them in a matrices. Insert the following script.

%Calculate spatial discretization

dx=L/nx;

dz=H/nz;

%Define x and z position in fluid domain as matrices and initialize them

xDomain=zeros(nx,nz);

zDomain=zeros(nx,nz);

for i=1:nx

for j=1:nz

%Coordinate reference frame is at the beginning of the chamber

xDomain(i,j)=dx/2+dx*(i-1);

%Coordinate reference frame is half way up at the center of chamber

zDomain(i,j)=dz/2+dz*(j-1)-0.025;

end

5

end

To read in the text files with CFD results we need to create new matrices to hold values for the
velocity components, turbulent kinetic energy, and the turbulent kinetic energy dissipation rate.
We subsequently open the necessary files for reading. The information in the text files are ordered
according to the computational cells from bottom left to top right. The indexing first progresses
from left to right and then from bottom to top. This affects the order of iterative loops that we
need to implement to read the information properly. Also note that we need to occasionally skip
the brackets in the text files. We then close the files after reading them. Insert the following
script.

%Define airflow velocities u and w (x and z components)

%in fluid domain and initialize them

%Define kinetic energy and dissipation rate in fluid domain and initialize them

%These are read from text files from left to right (+ve x)

%and then from bottom to top (+ve z)

uDomain=zeros(nx,nz);

wDomain=zeros(nx,nz);

kDomain=zeros(nx,nz);

eDomain=zeros(nx,nz);

%Read u, w, k, and e from files, if necessary skip left and right brackets

fileNameU=’Lab08TurbulentSettlingChamberU.txt’;

fidU=fopen(fileNameU);

fileNamek=’Lab08TurbulentSettlingChamberk.txt’;

fidk=fopen(fileNamek);

fileNamee=’Lab08TurbulentSettlingChamberepsilon.txt’;

fide=fopen(fileNamee);

%We need to loop through j first and then i; reason why?

for j=1:nz

for i=1:nx

%Read left bracket (from fidU

fscanf(fidU, ’%1s’, 1);

%Read u and store it in uDomain

uDomain(i,j)=fscanf(fidU, ’%f’, 1);

%Read v and simply discard it

fscanf(fidU, ’%f’, 1);

%Read w and store it in wDomain

wDomain(i,j)=fscanf(fidU, ’%f’, 1);

%Read right bracket) from fidU

fscanf(fidU, ’%1s’, 1);

%Read k from fidk

kDomain(i,j)=fscanf(fidk, ’%f’, 1);

6

%Read e from fide

eDomain(i,j)=fscanf(fide, ’%f’, 1);

end

end

%Close the files after reading the data into matrices

fclose(fidU);

fclose(fidk);

fclose(fide);

To simulate particle collection efficiency, we need a counter variable to be able to increment it
within the code every time a particle gets deposited on the bottom plate of the the settling
chamber. Enter the following script to initialize a counter variable.

%Initialize the number of particles collected

npCollected=0;

Next we define position matrices for particles to have the x and z coordinates of each individual
particle at any time step. Remember that this is a 2D simulation so there is no y position
matrix. We position all particles, initially at x(1,:)=0, but we randomize particle placement in
the z coordinates according to a uniform distribution. This places particles uniformly across the
settling chamber. Complete the following script.

%Define position matrices and initialize to zero

%The two dimensional matrix contains position as a function of time

x=zeros(nt,np); %x Position vector [m]

z=...

%Randomize the vertical (z) position of particles

z(1,:)=H*(0.5-rand(1,np));

Now we are ready to begin iterating, first through number of particles and then through time
steps. First we initialize the particle velocities to zero, and then we calculate air velocity at the
location of each particle. The velocity components for the air is the axial and vertical directions.
Note that we need to convert the particle position into indices so we can lookup up the desired
CFD simulation value. Complete the following script.

%Loop through the time steps and entire particle ensemble

for particle=1:np

%Initialize the particle velocity components

vxold=...

vzold=...

%Initialize the air velocity components at particle location

%We can convert particle positions to the suitable indices in order to

%look up u, w, k, and e from the fluid domain

iIndex=floor(x(1,particle)/dx+1);

7

jIndex=floor((z(1,particle)+0.025)/dz+1);

u=uDomain(iIndex,jIndex);

w=...

We then initialize the eddy interaction, life, and crossing times necessary for the Eddy Interaction
model. To start, we set these numbers to large values so we sample an eddy for the first time
iteration. We then proceed to the time loop by initializing the particle accelerations and appending
them with gravity and buoyancy accelerations.

%Start with a "large" eddy interaction, life, and crossing times [s]

%to make sure adequate if statements are executed

ti=1;

te=1;

tc=1;

%Now iterate through time steps

for time=2:nt

%Set time step as 10% of the particle characteristic time

dt=0.1*tau;

%Reset acceleration terms

ax=0.0;

az=0.0;

%Append accelerations by gravity force

az=az-g;

%Append accelerations by buoyancy force

az=az+(1/mp)*(pi/6)*Dp^3*rho*g;

It is necessary to check at every time step if a new eddy must be sampled when the eddy interaction
time become greater than the eddy life time or the eddy crossing time. If this happens, a new eddy
is sampled, and new fluctuating velocity components are added to the mean fluid velocity. These
fluctuating components are computed having the information about turbulent kinetic energy and
turbulent kinetic energy dissipation rate in the flow, which are available from CFD analysis. If a
new eddy should not be sampled, we simply increment the eddy interaction time, until it becomes
large enough for an eddy to sample. Complete the following script.

%Calculate the turbulent fluctuations if necessary

if ((ti >= te) || (ti >= tc))

%Reset the eddy interaction time for the particle

ti=0;

%Look up the turbulent kinetic energy for fluid at particle location

k=kDomain(iIndex,jIndex);

8

%Look up the dissipation rate for fluid at particle location

e=...

%Sample turbulent fluctuating velocities

%In 2D flow k=0.5*(up^2+wp^2) and for isotropic turbulence k=up^2

up=randn*sqrt(k);

wp=...

%Append the fluid velocities with these fluctuations

u=uDomain(iIndex,jIndex)+up;

w=...

%Calculate eddy length scale and life time

le=2*(Cmu)^(3/4)*(k)^(3/2)/e;

te=2*(3/2)^0.5*(Cmu)^(3/4)*k/e;

%Calculate relative magnitude of fluid to particle velocity

urel=((u-vxold)^2+(w-vzold)^2)^0.5;

%Calculate eddy crossing time

if (1-le/(tau*urel))>0

tc=-tau*log(1-le/(tau*urel));

else

tc=te;

end

%Lower dt to 0.05 of the minimum of eddy life and crossing times

if (dt > 0.05*min(te, tc))

dt=0.05*min(te, tc);

end

else

%Update eddy interaction time

ti=ti+dt;

end

We then account for the effect of drag on particle acceleration. Remember to append the velocity
fluctuations to the mean velocity in the flow. This is important because a new eddy is not
necessarily sampled at every time step. We subsequently calculate the coefficient of drag and
them update the particle accelerations.

%Now include the effect of drag

u=uDomain(iIndex,jIndex)+up;

w=wDomain(iIndex,jIndex)+wp;

%Calculate relative magnitude of fluid to particle velocity

urel=((u-vxold)^2+(w-vzold)^2)^0.5;

9

%Calculate particle’s Reynolds number

Re=(rho*Dp*urel)/mu;

%Calculate the coefficient of drag based on this Reynolds number

if (Re < 0.1)

CD=24/Re;

elseif (Re < 2)

CD=(24/Re)*(1+3*Re/16+9*Re^2*log(2*Re)/160);

elseif (Re < 500)

CD=(24/Re)*(1+0.15*Re^0.687);

elseif (Re < 2e5)

CD=0.44;

end

%Append accelerations by drag accelerations

ax=ax-(1/mp)*pi*CD*rho*Dp^2*(vxold-u)*abs(vxold-u)/(8*Cc);

az=...

After finding the total particle acceleration, we are ready to update particle velocities and positions.

%Find new particle velocities

vx=vxold+ax*dt;

vz=...

%Find new particle positions

x(time,particle)=x(time-1,particle)+vx*dt;

z(time,particle)=...

Now we need to determine the fate of each particle in case it gets deposited at the bottom plate
or top plate, i.e. collected, or in case it exists the settling chamber without being deposited. If the
particle travels a distance greater than the settling chamber length, then we set its axial position
equal to the length of the settling chamber, and then break the inner time loop and move on to the
next particle. If the particle travels all the way to the bottom or top plate, then we set its vertical
position equal to the position of the bottom or top plate, increment the counter variable, and then
break the inner time loop and move on to the next particle. This coding strategy, significantly
speeds up the code because we do not have to complete all the iterations. Insert the following
script.

%If the particle has exited the settling chamber, it has not been

%collected. In this case break the inner loop and move on to the next

%particle

if (x(time,particle)>L)

x(time,particle)=L;

break;

end

10

%If the particle has settled at the bottom or top of the chamber

%Increment the npCollected and break the inner loop and move on to

%the next particle

if (z(time,particle)<-H/2)

z(time,particle)=-H/2;

npCollected=npCollected+1;

break;

end

if (z(time,particle)>H/2)

z(time,particle)=...

npCollected=...

break;

end

We then update the particle velocities and the air velocity at particle’s location for the next time
iteration. Complete the following script

%Update old velocities for next iteration

vxold=...

vzold=...

%Update the fluid velocity components at particle location for next iteration

iIndex=floor(x(time,particle)/dx+1);

jIndex=floor((z(time,particle)+0.025)/dz+1);

u=...

w=...

end

end

Finally, we can simply calculate the particle collection efficiency. Insert the following script.

%Now calculate the particle collection efficiency based on the simulation

etaSimulation=npCollected/np

As usual, we can plot representative results, such as location of all particles at selected time steps,
or trajectories of individual particles at all time steps. Insert the following script.

figure

plot(x(1,:),z(1,:),’ko’);

hold on

plot(x(1/1000*nt,:),z(1/1000*nt,:),’bo’);

plot(x(1/500*nt,:),z(1/500*nt,:),’ro’);

plot(x(1/100*nt,:),z(1/100*nt,:),’co’);

plot(x(nt,:),z(nt,:),’yo’);

axis([0 1 -0.025 0.025]);

11

xlabel(’x [m]’,’FontSize’,20);

ylabel(’z [m]’,’FontSize’,20);

h_legend=legend(’Timestep=1’, ’Timestep=1/1000*nt’, ’Timestep=1/500*nt’,...

’Timestep=1/100*nt’, ’Timestep=nt’);

set(h_legend,’FontSize’,20);

figure

plot(x(:,1),z(:,1),’ko’);

hold on

plot(x(:,1/4*np),z(:,1/4*np),’bo’);

plot(x(:,1/2*np),z(:,1/2*np),’ro’);

plot(x(:,3/4*np),z(:,3/4*np),’co’);

plot(x(:,np),z(:,np),’yo’);

axis([0 1 -0.025 0.025]);

xlabel(’x [m]’,’FontSize’,20);

ylabel(’z [m]’,’FontSize’,20);

h_legend=legend(’Particle=1’, ’Particle=1/4*np’, ’Particle=1/2*np’,...

’Particle=3/4*np’, ’Particle=np’);

set(h_legend,’FontSize’,20);

Now run your code to complete the simulation matrix. You should get results similar to the
following table and figures. Ensure that by the final simulation time step all particles either
deposit on the bottom or top plates or leave the settling chamber. This can be easily verified by
lack of particles in the plots at the final time step.

Table 2: Simulation results
Simulation 1 2
Dp [m] 20e–6 40e–6
ReC 6500 6500
etaTheoretical 0.111 0.377
etaSimulation 0.185 0.500

Comment on the following points and discuss the following questions.

• Try to explain the effect of particle size on the collection efficiency of the settling chamber.

• We did not simulate the Brownian dispersion effect for the particles in this lab. Discuss if
accounting for Brownian dispersion effects would drastically change our results.

• Discuss any potential sources for the mismatch between the theoretical and simulated particle
efficiency.

• Unlike the laminar settling chamber, it is possible to see particles depositing to the top plate,
against the gravitational force that tends to pull particles down. Discuss how this is possible.

• It appears that most of the turbulent motion of particles occurs near the walls, as is evident
from the particle dispersion plots. Discuss why is this the case, given the CFD plots.

12

Figure 3: Particle dispersion and collection for the entire particle ensemble at selected number of
time steps (left) and particle dispersion and collection for selected number of particles over the
entire number of time steps (right) for Dp=20e-6 m (top), Dp=40e-6 m (bottom).

13

ENGG*4810: Control of Atmospheric Particulates

Homogeneous Water Drop Nucleation
Amir A. Aliabadi

November 13, 2017

1 Introduction

In this lab we are going to simulate homogeneous nucleation of water drops. In the lectures we
learnt the Gibbs equation that tells us, for a system containing only a single species A, that the
vapor pressure over a curved interface always exceeds that of the same substance over a flat surface

pA = poAexp

(
2σvl
kTRp

)
= poAexp

(
2σMA

RTρlRp

)
(1)

This equation tells us the required vapor pressure pA in order to be able to nucleate drops of
radius Rp. We also learnt that the ratio of pA/p

o
A is known as the saturation ratio (S), which is

an important parameter in homogeneous nucleation processes. The nucleation rate J [m−3 s−1]
can be calculated in terms of measurable quantities such as

J =
1

ρl

(
2σMA

π

)1/2(
poA
T

)2
N

3/2
av

R2
S2exp

(
−16πM2

Aσ
3Nav

3ρ2lR
3T 3ln2S

)
(2)

2 Simulation Matrix

We wish to simulate required saturation ratio as a function of drop size as well as nucleation rate
as a function of saturation ratio for water at two temperatures. Table below shows the simulation
matrix.

1

Table 1: Simulation matrix
Simulation 1 2
T [oC] 25 100
poA [Pa] 3.1690e3 101.3200e3
σ [J m−2] 71.97e–3 58.85e–3

3 MATLAB Script

As usual, we begin be defining the simulation constants. Insert the following script

%HomogeneousNucleation

%Homogeneous water drop nucleation

%Clear command window and memory

clc

clear

%Constants of simulation

R=8.314; %Universal gas constant [J K^-1 mol^-1]

MA=18.015e-3; %Water molecular weight [kg mol^-1]

rhol=1000; %Liquid density [kg m^-3]

k=1.38e-23; %Boltzmann constant [J K^-1]

Nav=6.022e23; %Avogadro’s number [mol^-1]

T1=273.15+25; %Drop-vapor mixture temperature [K]

T2=273.15+100;

sigma1=71.97e-3; %Water surface tension (function of temperature) [J m^-2]

sigma2=58.85e-3;

pAo1=3.1690e3; %Water vapor pressure [Pa]

pAo2=101.3200e3;

Next define a vector for drop sizes and then calculate the required saturation ratio for each case
as a function of desired drop size for homogeneous nucleation of water. Complete the following
script.

%Initialize water droplet radius vector

Rp=1e-9:1e-9:1e-6;

%Calculate saturation ratio for different temperatures as a function of Rp

S1=exp(2.*sigma1.*MA./(R.*T1.*rhol.*Rp));

S2=...

Next plot the results in the log-log plot.

figure

loglog(Rp,S1,’b-’,’LineWidth’,3);

2

hold on

loglog(Rp,S2,’r-’,’LineWidth’,3);

xlabel(’Rp [m]’,’FontSize’,20);

ylabel(’Saturation Ratio S’,’FontSize’,20);

h_legend=legend(’T1=273.15+25 K’, ’T2=273.15+100 K’);

set(h_legend,’FontSize’,20);

Next we redefine a range for saturation ratio to be able to simulate nucleation rates. Complete
the following script and then plot the result in using semilogy command. You should get the
following graphs.

%Now redefine S

S=1:0.1:10;

%Calculate nucleation rate

J1=(1./rhol).*(2.*sigma1.*MA./pi).^0.5.*(pAo1./T1).^2.*(Nav).^1.5./(R.^2).*S.^2.*...

exp(-(16.*pi.*MA.^2.*sigma1.^3.*Nav)./(3.*rhol.^2.*R.^3.*T1.^3.*(log(S)).^2));

J2=...

Comment on the following points and discuss the following questions.

• Comment on the dependence of saturation ratio to temperature required to form drops of a
certain size by homogeneous nucleation.

• A process engineer is designing a flow stream that contains pure water vapor. The pressure
of the flow stream varies on somewhat an unpredictable fashion. She wants to avoid ho-
mogeneous nucleation if possible. Should she design the process to operate on low or high
temperature?

• The curves in the plot for nucleation rate versus saturation ratio exhibit drastic scales in the
vertical axis with critical points indicating a burst of nucleation. What does the drastic scale
imply? for example what does Log J equal to 10−200 mean in comparison to 102? What is
the approximate critical saturation ratio at each temperature?

3

Figure 1: Required saturation ratio to form drops by nucleation of a desired diameter (top) and the
functional dependence of nucleation rate to saturation ratio for different temperatures (bottom)
for T1=273.15+25 K and T2=273.15+100 K.

4

ENGG*4810: Control of Atmospheric Particulates

Particle Collection Efficiency of a Turbulent Electrostatic Precipitator
Amir A. Aliabadi

November 1, 2019

1 Introduction

In this lab we are going to simulate the particle collection efficiency in a turbulent electrostatic
precipitator. For simplicity we will assume particles are uniformly distributed over the cross
section, particle charging is the same for all particles, and that the terminal velocity and electric
field are constants over space and time. The chamber has a length of L = 1 m and a cross sectional
radius of rc = 0.1 m. The mean velocity in this chamber is u = 1 m s−1 in the axial direction.
The electric field is E = 1 × 106 N C−1. The chamber Reynolds number is given as

Rec =
2rcρu

µ
(1)

and must be checked to confirm turbulent flow. Assuming particle Reynolds number is Re < 0.1,
the terminal or electrical migration velocity is given as

ve =
zpeECc

3πµDp

(2)

where zp is the number of charges on the particle, e [C] is the charge of a single electron, and
E [N C−1] is electric field. From the lectures we learn that the overall design equation for the
turbulent flow electrostatic precipitator using these simplifying assumption gives the following
particle collection efficiency.

η = 1 − exp

(
−Ave

Q

)
(3)

1

2 Simulation Matrix

We wish to simulate particle electric migration velocity and collection efficiency using the above
analytical formulae. We perform each simulation for a range of particle sizes in the range Dp =
1 − 10 × 10−6 m and number of charges on each particle in the range zp = 1 − 10. Table below
shows the simulation matrix.

Table 1: Simulation matrix
Simulation 1 2 3 4 5
E [N C−1] 1e6 2e6 1e6 1e6 1e6
rc [m] 0.1 0.1 0.2 0.1 0.1
L [m] 1 1 1 2 1
u [m s−1] 1 1 1 1 2

3 MATLAB Script

As usual, we begin be defining the simulation constants. Complete the following script

%TurbulentElectrostaticPrecipitator

%Particle collection efficiency of an electrostatic precipitator

%under turbulent airflow condition

%Clear command window and memory

clc

clear

%Constants of simulation

g=9.81; %Gravitational acceleration [m s^-2]

p=101000; %Air pressure [Pa]

R=8.314; %Universal gas constant [J K^-1 mol^-1]

M=28.966e-3; %Air molecular weight [kg mol^-1]

rhop=1000; %Particle density [kg m^-3]

T=300; %Air temperature [K]

mu=1.846e-5; %Air dynamic viscosity [kg m^-1 s^-1]

rho=1.2; %Air density [kg m^-3]

e=1.602e-19; %Electron charge [C]

E=1e6; %Electric field [N C^-1]

rc=0.1; %Collector radius [m]

L=1; %Length of precipitator [m]

ubar=1; %Precipitator air velocity [m s^-1]

Next, we write a script to calculate the Reynolds number in the electrostatic precipitator to ensure
the flow is turbulent. Subsequently we perform a simple calculation to find the chamber electrode

2

area and airflow rate. Complete the following script in such a way that the Reynolds number,
chamber electrode area, and airflow rate get printed on the command window of MATLAB.

%Calculate the Reynolds number for the precipitator to ensure turbulent flow

ReC=...

%Calculate collector surface area and the airflow rate

A=...

Q=...

Next we create a matrix of all particle diameters and number of particle charges. This will be
done using MATLAB’s linspace and meshgrid commands. The first command creates a linearly
spaced number of values given upper and lower bounds. The second command creates a matrix
for this purpose. Insert the following script.

%Define particle size range for which we wish to find terminal velocity

dp=linspace(1e-6,1e-5);

%Define number of electric charges for which we wish to find terminal velocity

zp=linspace(1,10);

%Construct a matrix of particle diameters and number of charges

[Dp,Zp] = meshgrid(dp,zp);

We finally calculate electrical migration velocity and collection efficiency using matrix operations.
Complete the following script.

%Calculate mean free path, Knudsen number, slip correction, and mass

lambda=mu/(0.499*p*sqrt(8*M/(pi*R*T)));

Kn=2.*lambda./Dp;

Cc=...

%Calculate the terminal or electrical migration velocity

ve=(Zp.*e.*E.*Cc)./(3.*pi.*mu.*Dp);

%Calculate the overall collection efficiency of the precipitator

eta=...

It is favourable to plot our results in 3D using MATLAB’s contour3 command. Insert the following
script to plot your results. The argument 500 tells the script compiler to plot 500 contours equally
spaced in values.

%Make a contour plot of electrical migration velocity as a function of Dp and Zp

figure

contour3(Dp,Zp,ve,500);

xlabel(’Dp [m]’,’FontSize’,20);

ylabel(’Zp’,’FontSize’,20);

3

zlabel(’ve [m s^-1]’,’FontSize’,20);

figure

contour3(Dp,Zp,eta,500);

xlabel(’Dp [m]’,’FontSize’,20);

ylabel(’Zp’,’FontSize’,20);

zlabel(’eta’,’FontSize’,20);

Now run your code to complete the simulation matrix. You should get results similar to the
following table and figures.

Table 2: Simulation results
Simulation 1 2 3 4 5
ReC 13000 13000 26000 13000 26000
A [m2] 0.6283 0.6283 1.2566 1.2566 0.6283
Q [m3 s−1] 0.0314 0.0314 0.1257 0.0314 0.0628

Comment on the following points and discuss the following questions.

• Try to explain the effects of particle size and the number of charges on the electrical migration
velocity and collection efficiency of the precipitator.

• Based on the number of simulation cases you performed, discuss which strategy is more
cost effective to increase the particle collection efficiency. Assume that the largest cost is
associated with the size of the precipitator and the material consumption. Assume that cost
of electrical components are smaller.

Figure 1: Electrical migration velocity and particle collection efficiency in a turbulent electrostatic
precipitator for simulation case 1.

4

Figure 2: Electrical migration velocity and particle collection efficiency in a turbulent electrostatic
precipitator for simulation case 2.

Figure 3: Electrical migration velocity and particle collection efficiency in a turbulent electrostatic
precipitator for simulation case 3.

5

Figure 4: Electrical migration velocity and particle collection efficiency in a turbulent electrostatic
precipitator for simulation case 4.

Figure 5: Electrical migration velocity and particle collection efficiency in a turbulent electrostatic
precipitator for simulation case 5.

6

